Influence of forest modeling on LAI and chlorophyll content estimation with radiative transfer inversion for a woodland savanna

Thomas Miraglio1,2Karine Adeline1J.P. Gastellu-Etchegorry3Margarita Huesca4Susan Ustin4Xavier Briottet1

¹ONERA, DOTA/POS, Toulouse

²Université Fédérale Toulouse Midi-Pyrénées

³CESBIO, Toulouse

⁴CSTARS, University of California, Davis

Plan

Context

- Objectives and data
 - Objectives
 - Data
 - Method
- Part 1 Sensivitity analysis
 - DART modeling
 - Structural sensitivity analysis
 - Results
- Part 2 Inversion and performances
 - LUT generation
 - Performances: LAI and Cab
- 5 Conclusion, limitations and perspectives

Part 1 - Sensivitity analysis

Part 2 - Inversion and performances

Conclusion, limitations and perspectives

Context

Figure: A mediterranean forest.

Mediterranean woodland savannas are highly heterogenous, with low Leaf Area Index (LAI) and Canopy Cover (CC): canopy modeling should rely on 3D Radiative Transfer Models (RTM).

The DART model has been chosen for this study.

Objectives

Objectives and data

• A widespread method to estimate Chlorophyll (C_{ab}) and LAI from remote sensing is inversion of hyperspectral acquisitions using LUTs (Look-Up Tables) generated by radiative transfer models (RTM).

• The objective of this work is to evaluate the influence of forest representation within the DART model on LAI and C_{ab} estimation precision over sparse forests.

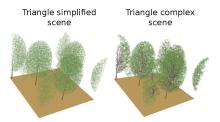


Figure: Different DART modelings of the same scene.

Data

Both hyperspectral acquisitions and field data are available at Tonzi Ranch for summer 2014.

Figure: Field data locations within the site.

Figure: Tonzi Ranch woodland savanna.

Field data:

- Leaf biochemistry data measured in laboratory
- LAI derived from DHP using the Hemiview software

ONERA

Method

Objectives and data

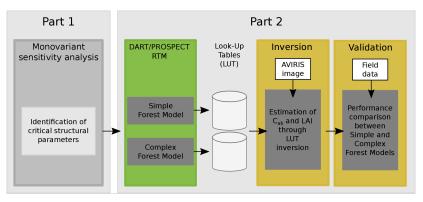
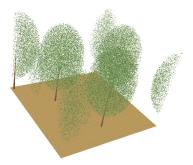


Figure: Flowchart of the methodological approach.

UCDAVE

GSTARS


ESRID

DART modeling

Simplified Forest Model:

- ellipsoïdal crowns
- no branches
- homogeneous crowns
- spherical LAD
- mean tree height

Biochemistry	LAI $[m^2.m^{-2}]$	CC [%]
200 different (C _{ab} ,C _{ar} ,EWT,LMA)	0.4	30
combinations	0.8 1.3	50 90

Table: Base characteristics of the modeled scenes.

Sensitivity analysis

Sensitivity study on

- Vegetation indices: $gNDVI(C_{ab})$ and NDVI(LAI)
- Reflectance spectra: 0.5-0.75 μm (C_{ab}), 0.75-2.45 μm (LAI)

Parameter	Base	Sensitivity		
LAD	spherical	erectophil	gNDVI =	R780 - R550
branches	none	modeled	8.12.11	R780 + R550
clumping	none	50% holes, heterogeneous radial distribution		
tree height	mean	mean +/- standard deviation		
bark reflectance	Quercus Douglasii	Pinus sabiniana		R833 — R677
Table: V	/ariable paramet	ers of the sensitivity analysis.	$NINI - \cdot$	R833 + R677

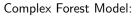
Variations induced by the structural parameters will be compared to reference values corresponding to uncertainties of $5\mu g.cm^{-2}$ C_{ab} and $0.2m^2/m^2$ LAI.

Sensitivity analysis results

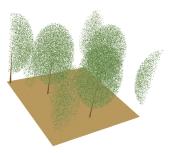
	C _{ab}		LAI	
	gNDVI diff.	SAM 0.5-0.75μm	NDVI diff.	SAM 0.75-2.45µm
	[%]	[°]	[%]	[°]
Reference	2.6	0.66	7.4	1.30
LAD	1.0	1.38	5.4	0.76
branches	2.6	0.83	3.6	0.74
clumping	0.5	0.64	2.4	0.32
tree height	0.2	0.25	1.0	0.15
bark reflectance	0.1	0.10	0.3	0.10

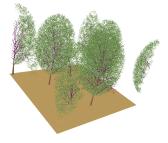
Table: Median absolute relative differences between the base cases and their modified counterparts.

- Vegetation indices: LAD and branches have a significant influence on both VI
- Reflectance spectra
 - C_{ab}: LAD, branches and clumping all have strong effects
 - LAI: no single structural parameter is critical, combinations may be



Part 2 - Inversion and performances


DART modeling


Simplified Forest Model:

- ellipsoïdal crowns
- no branches
- homogeneous crowns
- spherical LAD
- mean tree height

- ellipsoïdal crowns
- branches
- leaf clumping
- erectophil LAD
- mean tree height

Part 2 - Inversion and performances

Conclusion, limitations and perspectives

AVIRIS image inversion

Parameters	Range	Step		# values
CC	10-90	20	%	5
LAI	0.1-1.9	0.3	$m^2.m^{-2}$	7
Cab	10-60	10	μg.cm ⁻² μg.cm ⁻²	6
C _{ar}	2-22	4	$\mu g.cm^{-2}$	6
Cm	0.001-0.016	0.003	g.cm ⁻²	6
Cw	0.001-0.021	0.004	cm	6

Table: Variable input parameters used for the LUT generation.

Figure: AVIRIS RGB composition - summer 2014.

Two LUTs are generated:

- SFR" LUT using the Simplified Forest Model
- S" LUT taking into account the structural elements identified in the sensitivity analysis

Part 2 - Inversion and performances

Conclusion, limitations and perspectives

Performances: LAI estimations

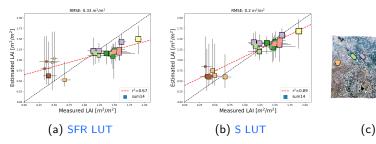


Figure: LAI estimations using the SFR scenario (a) and the S scenario (b). Marker colors correspond to location within the site (c). Inversion done using NDVI as a criterion.

LAI estimations with the S model have lower RMSE and better coherency.

Performances: C_{ab} estimations

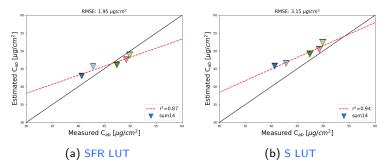


Figure: C_{ab} estimations using the SFR scenario (a) and the S scenario (b). Inversion done using gNDVI as a criterion.

No clear gain in C_{ab} estimations: RMSE is higher, as is R^2 .

Low number of validation points: more data is needed.

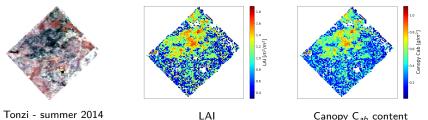
Conclusion and limitations

Conclusion

- LAD, clumping and branches have a significant influence on the scene reflectance spectra and common VI of sparse forests
- Taking tree structural elements into account within the RTM improves LAI estimations
- C_{ab} estimations however seem not to be improved, but few validation points are available yet

Limitations

- Soil reflectance influence has not been considered
- Different tree distributions within the DART elementary scene may be considered: only one was modeled in this study



Perspectives

- Additional validation data will be added, as AVIRIS images and field data are available for summers 2013, 2016 and fall 2013
- Include the PROSPECT parameter N in the sensitivity analysis
- Benefits from precise tree modeling within DART using TLS data will be assessed (collaboration with Crystal Schaaf, UCB)

Thank you for your attention.

Canopy Cab content

GSTARS

ONERA

Tonzi - summer 2014