7^{ème} colloque - SFPT-GH 2019 Apport d'une voie panchromatique pour le démélange d'image hyperspectrale

Simon Rebeyrol (IRAP/ONERA) Yannick Deville (IRAP) - Véronique Achard (ONERA) Xavier Briottet (ONERA) - Stéphane May (CNES)

Contexte

Depuis 2011 la communauté scientifique française soutient des projets de satellite embarquant deux caméras :

- \blacktriangleright une hyperspectrale [0.4 2.5] µm 10nm de pas spectral 8m de pas d'échantillonnage au sol.
- \blacktriangleright une panchromatique 2m de pas d'échantillonnage au sol.

Image hyperspectral (HSI) - 8m

Image panchromatique (Pan) - 2m

Présentation du problème

3/14

ONFRA

Mélange linéaire additif

$$\overrightarrow{y_i} = \sum_{k=1}^{P} x_{ki} \overrightarrow{s_k} + \overrightarrow{w}$$

- \mathbb{S} le pixel $i \ \overrightarrow{y} \in \mathbb{R}^L_+$
- ${}^{\circledast}$ les fractions d'abondance $\overrightarrow{x_k} \in {\rm I\!R}_+^P$
- ${}^{\circledast}$ les pôles de mélange $\overrightarrow{s_k} \in {\rm I\!R}_+^L$
- $^{\ }$ un bruit \overrightarrow{w}

Mélange linéaire additif

$$\overrightarrow{y_i} = \sum_{k=1}^{P} x_{ki} \overrightarrow{s_k} + \overrightarrow{w}$$

- \mathbb{S} le pixel $i \ \overrightarrow{y} \in \mathbb{R}^L_+$
- \mathbb{S} les fractions d'abondance $\overrightarrow{x_k} \in \mathbb{R}^P_+$
- \circledast les pôles de mélange $\overrightarrow{s_k} \in {\rm I\!R}_+^L$
- $^{\mbox{\ \ un bruit\ }} \overrightarrow{w}$

Objectif

Estimer de manière aveugle les pôles de mélange $\overrightarrow{s_k}$ ainsi que leurs fractions d'abondance $\overrightarrow{x_{k,i}}$ dans l'image.

Hypothèse

Si la zone au sol couverte par un pixel hyperspectral $\overrightarrow{y_i}$ est homogène au sens de la voie panchromatique, y_i est pur.

Hypothèse

Si la zone au sol couverte par un pixel hyperspectral $\overrightarrow{y_i}$ est homogène au sens de la voie panchromatique, y_i est pur.

Hypothèse

5/14

Si la zone au sol couverte par un pixel hyperspectral $\overrightarrow{y_i}$ est homogène au sens de la voie panchromatique, y_i est pur.

Construction d'une première base de pôles de mélange

Critère d'homogénéité sur les imagettes pan_i

 $h_i = max\left(pan_i\right) - min\left(pan_i\right)$

- Définition d'un seuil d'hétérogénéité ϵ_h et seuillage de l'image panchromatique.
- 2 Obtention d'une liste l_h de pixels purs

Classification des pixels purs

Regroupement des spectres purs par angle spectral en p classes C:

$$\theta = \arccos\left(\frac{\langle \overrightarrow{s_k}, \overrightarrow{s_l} \rangle}{\|\overrightarrow{s_k}\| . \|\overrightarrow{s_l}\|}\right)$$

Il faut définir un seuil ϵ_a d'angle spectral.

Sélection des représentants $\overrightarrow{s_k}$ des classes

Le pôle de mélange $\vec{s_k}$ est choisi comme étant le spectre de la classe C_k ayant la plus forte homogénéité dans la zone panchromatique.

Résultats de détection

Image hyperspectrale

Image panchromatique

Résultats de détection

Image hyperspectrale

Zones homogènes

Résultats final de HBee

Classes de spectres purs

 $X = LSQNNeg(Y, S_H)$

Erreur de reconstruction à la fin de HBee:

$$RE = \frac{||\hat{y_i} - y_i||}{||\hat{y_i}||}$$

ONFRA

Oirap

Extraction des pôles de mélange non-représentés par les pixels purs

Approche globale :

- ➤ Application d'une méthode de démélange basée sur la factorisation en matrice non-négative (NMF) (Pauca et al., 2006) sur toute l'image
- $\pmb{\times}$ Ne converge pas vers une solution satisfaisante

Approche locale :

- ➡ Utilisation d'une série de NMF appliquée sur chaque zone mal reconstruites
- \blacktriangleright On utilise les résultats de HBee

 Détermination du nombre de pôle de mélange restant au fil des itérations

 $\underline{\wedge}$ initialiser les NMF

Hypothèse : Une zone mal reconstruite contient un unique pôle de mélange non estimé

$$S_{init} = \begin{pmatrix} S_H \\ S_e \\ \overline{Y_{RE}} \end{pmatrix}$$

cnes

Irai

10/14 Simon Rebeyrol - August 30, 2019 - 7 e^{me} colloque - SFPT-GH 2019

Hypothèse : Une zone mal reconstruite contient un unique pôle de mélange non estimé

• On utilise la couronne Y_c pour initialiser les abondances des matériaux connus

cnes

❷ On contraint l'abondance du matériau inconnu à $x(i)_{RE} = 1 - \sum_p x(i)_{H+e}$

$$X_{init} = \begin{pmatrix} X_{H+e} & \overrightarrow{x_{RE}} \end{pmatrix}$$

Hypothèse : Une zone mal reconstruite contient un unique pôle de mélange non estimé

NMF à mise à jour multiplicative (Lee and Seung, 2001)

$$X_{k+1} \leftarrow X_k \frac{S_k^T Y}{S_k^T S_k X_k + \epsilon} \qquad S_{k+1} \leftarrow S_k \frac{Y X^T}{S_k X_k X_k^T + \epsilon}$$

 \blacktriangleright S et X sont mises à jour sans contrainte.

➡ À la fin d'une NMF, les spectres déjà connus sont conservés tels quels.

cnes

Hypothèse : Une zone mal reconstruite contient un unique pôle de mélange non estimé

➡ Tant que des zones mal reconstruites subsistent (seuil) on recommence la procédure

Résultats au fil des itérations

Iteration 0

cnes

ONERA

Résultats au fil des itérations

Iteration 1

Oirap

cnes

ONFRA

11/14 Simon Rebeyrol - August 30, 2019 - 7 $^{\check{ extsf{e}}me}$ colloque - SFPT-GH 2019

Résultats au fil des itérations

Iteration 2

11/14 Simon Rebeyrol - August 30, 2019 - 7^{ème} colloque - SFPT-GH 2019

Critère	HBee-LSNMF	VCA	NFINDR	ATGP	MVCNMF	SISAL
\overline{RE} (%)	1.69	3.18	3.26	2.47	2.8	1.93
\overline{SA} (deg)	5.3	6.9	6.13	6.13	6.72	7.43

Table: Résultats comparés de HBee-LSNMF, ATGP (Ren and Chang, 2003), VCA Nascimento and Bioucas-Dias, 2005), NFINDR (Winter, 1999), MVCNMF (Miao and Qi, 2007) et SISAL (Nascimento and Bioucas-Dias, 2010) pour 9 pôles de mélange estimés

Conclusions

- \checkmark Estime naturellement le nombre de pôles de mélange restant
- \checkmark Estime des pôles de mélange proches de la vérité terrain
- $\checkmark\,$ Propose des performances équivalentes à celles des méthodes de la littérature

Conclusions

Apport de la voie panchromatique pour l'estimation des pôles de mélange

- \checkmark Permet d'estimer les pôles de mélanges représentés par des pixels purs ainsi que leur nombre
- \checkmark Estimation proches de la vérité terrain
- $\pmb{\mathsf{x}}$ Intrinsèquement limité à basse résolution spatiale
- \checkmark Permet de construire une première base de pôle de mélange
- \checkmark Une approche locale : Estimation des pôles de mélange restant
- \checkmark Estimées proches de la vérité terrain

Merci pour votre attention !

- Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 556–562. MIT Press.
- Miao, L. and Qi, H. (2007). Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3):765–777.
- Nascimento, J. M. P. and Bioucas-Dias, J. M. (2010). Unmixing hyperspectral intimate mixtures. Proc.SPIE, 7830:7830 – 7830 – 8.
- Nascimento, J. M. P. and Dias, J. M. B. (2005). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4):898–910.
- Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra and its Applications, 416(1):29 – 47. Special Issue devoted to the Haifa 2005 conference on matrix theory.
- Ren, H. and Chang, C.-I. (2003). Automatic spectral target recognition in hyperspectral imagery. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1232–1249.
- Winter, M. E. (1999). N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proc.SPIE, volume 3753, pages 3753 – 3753 – 10.

Vérité terrain

15/14

Construite par photo-interprétation à partir de l'image HS 55cm contient les classes suivantes :

Simulation des données

Clustering of the extracted spectra

Utilisation d'un algorithme simple qui va construire p classes C de spectres purs de manière itérative à l'aide d'un critère d'angle spectral

$$\theta = \left(\frac{\langle s_k, s_l \rangle}{\|s_k\| . \|s_l\|}\right)$$

Endmembers selection

Le pôle de mélange s_k est choisi comme étant le spectre de la classe C_k ayant la plus forte homogénéité dans la zone panchromatique.

Abundance fraction estimation

On estime la matrice X à l'aide d'un moindre carré non-négatif : X = NNLS(Y,S)

Algorithme de clustering

- 1 La liste des spectres purs est triée dans l'ordre croissant d'un critère d'hétérogénéité.
- 2 Création d'une classe C_k à partir du premier spectre de la liste.
- 3 Agrégation à C_k tous les spectres de la listes présentants une valeur de SAM avec le premier spectre inférieure à ϵ_{SAM} et suppression de ces spectres de la liste.
- 4 Recommencer à l'étape 1 jusqu'à ce que la liste soit vide.

