#### 7<sup>ème</sup> colloque - SFPT-GH 2019 Apport d'une voie panchromatique pour le démélange d'image hyperspectrale

Simon Rebeyrol (IRAP/ONERA) Yannick Deville (IRAP) - Véronique Achard (ONERA) Xavier Briottet (ONERA) - Stéphane May (CNES)







#### Contexte

Depuis 2011 la communauté scientifique française soutient des projets de satellite embarquant deux caméras :

- $\blacktriangleright$  une hyperspectrale [0.4 2.5] µm 10nm de pas spectral 8m de pas d'échantillonnage au sol.
- $\blacktriangleright$  une panchromatique 2m de pas d'échantillonnage au sol.



Image hyperspectral (HSI) - 8m



Image panchromatique (Pan) - 2m





#### Présentation du problème

3/14





ONFRA

#### Mélange linéaire additif

$$\overrightarrow{y_i} = \sum_{k=1}^{P} x_{ki} \overrightarrow{s_k} + \overrightarrow{w}$$

- $\mathbb{S}$  le pixel  $i \ \overrightarrow{y} \in \mathbb{R}^L_+$
- ${}^{\circledast}$  les fractions d'abondance  $\overrightarrow{x_k} \in {\rm I\!R}_+^P$
- ${}^{\circledast}$  les pôles de mélange  $\overrightarrow{s_k} \in {\rm I\!R}_+^L$
- $^{\ }$  un bruit  $\overrightarrow{w}$



#### Mélange linéaire additif

$$\overrightarrow{y_i} = \sum_{k=1}^{P} x_{ki} \overrightarrow{s_k} + \overrightarrow{w}$$

- $\mathbb{S}$  le pixel  $i \ \overrightarrow{y} \in \mathbb{R}^L_+$
- $\mathbb{S}$  les fractions d'abondance  $\overrightarrow{x_k} \in \mathbb{R}^P_+$
- $\circledast$  les pôles de mélange  $\overrightarrow{s_k} \in {\rm I\!R}_+^L$
- $^{\mbox{\ \ un bruit\ }} \overrightarrow{w}$

#### Objectif

Estimer de manière aveugle les pôles de mélange  $\overrightarrow{s_k}$  ainsi que leurs fractions d'abondance  $\overrightarrow{x_{k,i}}$  dans l'image.





# Hypothèse

Si la zone au sol couverte par un pixel hyperspectral  $\overrightarrow{y_i}$  est homogène au sens de la voie panchromatique,  $y_i$  est pur.





# Hypothèse

Si la zone au sol couverte par un pixel hyperspectral  $\overrightarrow{y_i}$  est homogène au sens de la voie panchromatique,  $y_i$  est pur.





# Hypothèse

5/14

Si la zone au sol couverte par un pixel hyperspectral  $\overrightarrow{y_i}$  est homogène au sens de la voie panchromatique,  $y_i$  est pur.







## Construction d'une première base de pôles de mélange

Critère d'homogénéité sur les imagettes  $pan_i$ 

 $h_i = max\left(pan_i\right) - min\left(pan_i\right)$ 

- Définition d'un seuil d'hétérogénéité  $\epsilon_h$  et seuillage de l'image panchromatique.
- 2 Obtention d'une liste  $l_h$  de pixels purs

#### Classification des pixels purs

Regroupement des spectres purs par angle spectral en p classes C:

$$\theta = \arccos\left(\frac{\langle \overrightarrow{s_k}, \overrightarrow{s_l} \rangle}{\|\overrightarrow{s_k}\| . \|\overrightarrow{s_l}\|}\right)$$

Il faut définir un seuil  $\epsilon_a$  d'angle spectral.

Sélection des représentants  $\overrightarrow{s_k}$  des classes

Le pôle de mélange  $\vec{s_k}$  est choisi comme étant le spectre de la classe  $C_k$  ayant la plus forte homogénéité dans la zone panchromatique.



#### Résultats de détection



Image hyperspectrale



Image panchromatique



#### Résultats de détection



Image hyperspectrale



Zones homogènes



#### Résultats final de HBee



Classes de spectres purs

 $X = LSQNNeg(Y, S_H)$ 



Erreur de reconstruction à la fin de HBee:

$$RE = \frac{||\hat{y_i} - y_i||}{||\hat{y_i}||}$$

ONFRA

**Oirap** 



#### Extraction des pôles de mélange non-représentés par les pixels purs

#### Approche globale :

- ➤ Application d'une méthode de démélange basée sur la factorisation en matrice non-négative (NMF) (Pauca et al., 2006) sur toute l'image
- $\pmb{\times}$  Ne converge pas vers une solution satisfaisante

#### Approche locale :

- ➡ Utilisation d'une série de NMF appliquée sur chaque zone mal reconstruites
- $\blacktriangleright$  On utilise les résultats de HBee

 Détermination du nombre de pôle de mélange restant au fil des itérations

 $\underline{\wedge}$  initialiser les NMF



**Hypothèse :** Une zone mal reconstruite contient un unique pôle de mélange non estimé





$$S_{init} = \begin{pmatrix} S_H \\ S_e \\ \overline{Y_{RE}} \end{pmatrix}$$

cnes

Irai

10/14 Simon Rebeyrol - August 30, 2019 - 7 $e^{me}$  colloque - SFPT-GH 2019

**Hypothèse :** Une zone mal reconstruite contient un unique pôle de mélange non estimé





• On utilise la couronne  $Y_c$  pour initialiser les abondances des matériaux connus

cnes

❷ On contraint l'abondance du matériau inconnu à  $x(i)_{RE} = 1 - \sum_p x(i)_{H+e}$ 







$$X_{init} = \begin{pmatrix} X_{H+e} & \overrightarrow{x_{RE}} \end{pmatrix}$$





**Hypothèse :** Une zone mal reconstruite contient un unique pôle de mélange non estimé



NMF à mise à jour multiplicative (Lee and Seung, 2001)

$$X_{k+1} \leftarrow X_k \frac{S_k^T Y}{S_k^T S_k X_k + \epsilon} \qquad S_{k+1} \leftarrow S_k \frac{Y X^T}{S_k X_k X_k^T + \epsilon}$$

 $\blacktriangleright$  S et X sont mises à jour sans contrainte.

➡ À la fin d'une NMF, les spectres déjà connus sont conservés tels quels.

cnes

**Hypothèse :** Une zone mal reconstruite contient un unique pôle de mélange non estimé



➡ Tant que des zones mal reconstruites subsistent (seuil) on recommence la procédure





#### Résultats au fil des itérations

#### Iteration 0



cnes

ONERA

#### Résultats au fil des itérations

#### Iteration 1



**Oirap** 

cnes

ONFRA

11/14 Simon Rebeyrol - August 30, 2019 - 7 $^{\check{ extsf{e}}me}$  colloque - SFPT-GH 2019

#### Résultats au fil des itérations

#### Iteration 2



11/14 Simon Rebeyrol - August 30, 2019 - 7<sup>ème</sup> colloque - SFPT-GH 2019



| Critère               | HBee-LSNMF | VCA  | NFINDR | ATGP | MVCNMF | SISAL |
|-----------------------|------------|------|--------|------|--------|-------|
| $\overline{RE}$ (%)   | 1.69       | 3.18 | 3.26   | 2.47 | 2.8    | 1.93  |
| $\overline{SA}$ (deg) | 5.3        | 6.9  | 6.13   | 6.13 | 6.72   | 7.43  |

Table: Résultats comparés de HBee-LSNMF, ATGP (Ren and Chang, 2003), VCA Nascimento and Bioucas-Dias, 2005), NFINDR (Winter, 1999), MVCNMF (Miao and Qi, 2007) et SISAL (Nascimento and Bioucas-Dias, 2010) pour 9 pôles de mélange estimés

#### Conclusions

- $\checkmark$ Estime naturellement le nombre de pôles de mélange restant
- $\checkmark$ Estime des pôles de mélange proches de la vérité terrain
- $\checkmark\,$  Propose des performances équivalentes à celles des méthodes de la littérature





# Conclusions

# Apport de la voie panchromatique pour l'estimation des pôles de mélange

- $\checkmark$ Permet d'estimer les pôles de mélanges représentés par des pixels purs ainsi que leur nombre
- $\checkmark$ Estimation proches de la vérité terrain
- $\pmb{\mathsf{x}}$ Intrinsèquement limité à basse résolution spatiale
- $\checkmark$ Permet de construire une première base de pôle de mélange
- $\checkmark$  Une approche locale : Estimation des pôles de mélange restant
- $\checkmark$ Estimées proches de la vérité terrain

### Merci pour votre attention !

- Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 556–562. MIT Press.
- Miao, L. and Qi, H. (2007). Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3):765–777.
- Nascimento, J. M. P. and Bioucas-Dias, J. M. (2010). Unmixing hyperspectral intimate mixtures. Proc.SPIE, 7830:7830 – 7830 – 8.
- Nascimento, J. M. P. and Dias, J. M. B. (2005). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4):898–910.
- Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix factorization for spectral data analysis. Linear Algebra and its Applications, 416(1):29 – 47. Special Issue devoted to the Haifa 2005 conference on matrix theory.
- Ren, H. and Chang, C.-I. (2003). Automatic spectral target recognition in hyperspectral imagery. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1232–1249.
- Winter, M. E. (1999). N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proc.SPIE, volume 3753, pages 3753 – 3753 – 10.



### Vérité terrain

15/14

Construite par photo-interprétation à partir de l'image HS 55cm contient les classes suivantes :







#### Simulation des données





#### Clustering of the extracted spectra

Utilisation d'un algorithme simple qui va construire p classes C de spectres purs de manière itérative à l'aide d'un critère d'angle spectral

$$\theta = \left(\frac{\langle s_k, s_l \rangle}{\|s_k\| . \|s_l\|}\right)$$

#### Endmembers selection

Le pôle de mélange  $s_k$  est choisi comme étant le spectre de la classe  $C_k$  ayant la plus forte homogénéité dans la zone panchromatique.

#### Abundance fraction estimation

On estime la matrice X à l'aide d'un moindre carré non-négatif : X = NNLS(Y,S)



#### Algorithme de clustering

- 1 La liste des spectres purs est triée dans l'ordre croissant d'un critère d'hétérogénéité.
- 2 Création d'une classe  $C_k$  à partir du premier spectre de la liste.
- 3 Agrégation à  $C_k$  tous les spectres de la listes présentants une valeur de SAM avec le premier spectre inférieure à  $\epsilon_{SAM}$  et suppression de ces spectres de la liste.
- 4 Recommencer à l'étape 1 jusqu'à ce que la liste soit vide.

