

Mineral Identification And Characterization: An Integrated Approach For Hyperspectral Image Processing

R. Rialland (CEA) R. Marion (CEA) C. Soussen (L2S) V. Carrère (LPGN)

7th scientific symposium of the hyperspectral group SFPT-GH – July 10, 2019

CONTEXT AND OBJECTIVES

Context:

- Provide information on industrial activities conducted in a factory and on their impact on the surrounding environment
- Study mineralogy of areas of geological interest

Objectives:

Identify, <u>characterize</u> and <u>map</u> minerals from a hyperspectral image

Constraints:

- Diversity of areas and minerals of interest
- Extraction of mineral information from reflectance spectra
- Limits from the database:
 - Spectra are acquired with several sensors (laboratory/airborne/space-borne)
 - Comparison with the spectra in the database

Cuprite (Nevada – USA)

Mountain Pass (California – USA)

- 1. Mineralogy and spectroscopy
- 2. Main issues of state of the art methods
- 3. Evolution of the AGM procedure
- 4. Reflectance spectra estimation procedure
- 5. Mineral identification and characterization
- 6. Conclusions and future work

Cea FROM MINERALOGY TO SPECTROSCOPY

How is a mineral defined?

- Chemical composition
- Arrangement of the atoms (crystal lattice)
- Physico-chemical, mechanic and optical properties

Reflectance spectrum of a mineral:

- Spectral range: VNIR SWIR [0.4 2.5] μm
- Continuum: humidity and surface roughness of the substrate (scattering)
- Absorptions: composition, concentration
- ⇒ It makes the identification and the characterization of the mineral possible

<u>Kaolinite $(Al_2Si_2O_5(OH)_4)$ and</u> associated reflectance spectra

STATE OF THE ART¹ AND MAIN ISSUES

- <u>Supervised / knowledge-based</u> (band ratios, MGM procedure^{4,5,6}, Tetracorder³, etc.)
- \rightarrow A priori knowledge
- \rightarrow Mineral identification by metrics
- \rightarrow Spectral mixtures
- <u>Supervised / data-driven</u> (PLSR, MTMF², etc.)
- \rightarrow *A priori* knowledge
- \rightarrow Mineralogical information exploitation
- Learning-based (ANN, Random Forest, etc.)
- \rightarrow Several minerals study
- \rightarrow Mineralogical information exploitation
- <u>Unsupervised</u> (Minimum wavelength mapper⁷, kmeans, etc.)
- \rightarrow Mineralogical information exploitation
- \rightarrow Database management
- <u>Unmixing</u> (linear mixing model, etc.)
- \rightarrow Several minerals study
- \rightarrow Spectral mixtures

⇒ We propose to modify the AGM procedure to automatically identify, characterize and map minerals without any prior knowledge

<u>Cuprite mineral map (Tetracorder) over the</u> range $[2.1 - 2.4] \mu m$

¹ Asadzadeh et al., 2016

- ² Kruse *et al.*, 2003
- ³ Swayze *et al.*, 2014
- ⁴ Lothodé, 2016
- ⁵ Brossard *et al.*, 2016
- ⁶ Marion *et al.*, 2018
- ⁷ Bakker *et al.*, 2011

C22 EVOLUTION OF THE AGM PROCEDURE

EGO MODEL^{1,2} (EXPONENTIAL GAUSSIAN OPTIMIZATION)

Objective:

 Parametric model (continuum and absorptions) for the logarithm of reflectance spectra

$$\begin{split} &\ln\rho(\lambda) = C(\lambda) + \sum_{i}^{N} G_{i}(\lambda) \\ &C(\lambda) = c_{0} + c_{1}.\lambda^{-1} + G_{UV}(\lambda) + G_{EAU}(\lambda) \\ &G_{i}(\lambda) = S_{i}.e^{-\frac{1}{2}\left(\frac{\lambda - \mu_{i}}{\sigma_{i} - k_{i}(\lambda - \mu_{i})}\right)^{2}} \end{split}$$

Why is this model well adapted ?

- Absorptions shapes:
 - VNIR (wide and shallow), SWIR (narrow and deep)
 - Asymmetry (ex: calcite)

Estimation issues:

- Number of estimated Gaussians
- Gaussians asymmetries and absorptions doublets
- Joint estimation of continuum and absorptions

Nontronite spectrum from USGS with associated continuum and absorptions

Calcite and kaolinite absorptions from USGS

¹ Pompilio *et al.*, 2009 ² Pompilio *et al.*, 2010

Preprocessing:

- Image noise estimation and characterization: signal dependent model¹
- Spectral mask (atmospheric water vapor)

Reflectance spectrum estimation procedure:

- ⇒ Continuum removal: Clark et Roush²
- \Rightarrow Absorptions initialization: <u>NNOMP³</u>
- \Rightarrow Continuum and absorptions fit: non-linear least squares
- \Rightarrow Joint continuum and absorptions fit: <u>optimal estimation⁴</u>

¹ Acito *et al.*, 2011 ² Clark *et al.*, 1984 ³ Bruckstein *et al.*, 2008 ⁴ Tarantola, 2005

NNOMP^{1,2} (NON-NEGATIVE ORTHOGONAL MATCHING PURSUIT)

Objectives:

- Estimate the number of Gaussians
- Initialize Gaussians parameters (depth, center, width)

Problem formulation:

- Gaussians dictionary *H*(center and width discretization)
- Find *x* sparse minimizing the following problem:

 $\min_{\mathbf{x}>0, \|\mathbf{x}\|_0 \le K} \|\log \rho - \boldsymbol{\mathcal{H}} \mathbf{x}\|_2^2$

Stopping criterions:

- Maximal number of Gaussians (K)
- MDLc (Minimum Description Length corrected) calculated for each added Gaussian (*j*):

$$\min_{j} \left\{ \log \epsilon(S_{j}) + \frac{\log(N_{\lambda}) \left(\left| S_{j} \right| + 1 \right)}{N_{\lambda} - \left| S_{j} \right| - 2} \right\}$$

¹ Bruckstein *et al.*, 200 8 ² Nguyen *et al.*, 2017

Objectives:

- Joint continuum and absorptions fit to the logarithm of the reflectance
- The number of Gaussians is fixed
- Estimate uncertainties

Problem formulation:

 Minimize a cost function which depends on a measurement error and a prior estimation on the parameters θ

 $\chi^{2}(\theta) = \frac{1}{2} (\theta - \theta_{init})^{T} S_{a}^{-1} (\theta - \theta_{init})$ $+ \frac{1}{2} (\ln \rho(\lambda) - EGO(\lambda, \theta))^{T} S_{\epsilon}^{-1} (\ln \rho(\lambda)$ $- EGO(\lambda, \theta))$

Results:

- Difficulties to estimate the asymmetry
- Uncertainties can be estimated for each EGO parameter

$$\ln \rho(\lambda) = C(\lambda) + \sum_{i}^{N} G_{i}(\lambda)$$
$$C(\lambda) = \mathbf{c_{0}} + \mathbf{c_{1}} \cdot \lambda^{-1} + \mathbf{G_{UV}}(\lambda) + \mathbf{G_{EAU}}(\lambda)$$
$$G_{i}(\lambda) = \mathbf{S_{i}} \cdot e^{-\frac{1}{2} \left(\frac{\lambda - \mu_{i}}{\sigma_{i} - k_{i}(\lambda - \mu_{i})}\right)^{2}}$$

¹ Tarantola, 2005.

Ceal POTENTIAL OF THE METHOD

Potential of using uncertainties for mineral identification and characterization:

- \Rightarrow Close absorptions (doublets) detection
- ⇒ Separation and identification of muscovite and illite using uncertainties on estimated positions

Minerals of interest (\sim 30 minerals):

- Clays (kaolinite, illite, montmorillonite, etc.)
- Carbonates (calcite, dolomite, etc.)
- Sulfates (alunite, jarosite, etc.)
- Rare earth elements (bastnaesite, monazite, etc.)
- Etc.

Database creation:

- Reflectance spectra database
- EGO parameters database (mean and standard deviation) for each mineral
- Same reflectance spectra estimation procedure

Diagnostic absorptions	Mean	Standard deviation
Absorption around 2.20µm	Center = 2.2066 Amplitude = - 0.3795 Width = 0.0214 Asymmetry = - 0.0908	Center = 0.0078 Amplitude = 0.0623 Width = 0.0027 Asymmetry = 0.0386
Absorption around 2.34µm	Center = 2.35071 Amplitude = - 0.1800 Width = 0.02837 Asymmetry = - 0.1525	Center = 0.0041 Amplitude = 0.0416 Width = 0.0042 Asymmetry = 0.0486
Absorption around 2.43µm	Center = 2.44962 Amplitude = - 0.15734 Width = 0.0388 Asymmetry = -0.03575	Center = 0.0044 Amplitude = 0.0334 Width = 0.0050 Asymmetry = 0.0878

C22 IDENTIFICATION PROCEDURE: FUZZY LOGIC PROBLEM

Main idea:

• For each mineral of the database, create an expert rule based on the EGO parameters database

Example of kaolinite:

- \Rightarrow diagnostics doublet AlOH absorptions (2.16 and 2.21 μ m)
- \Rightarrow secondary absorptions (2.31, 2.35 and 2.38 $\mu m)$
- \Rightarrow absorption's depths

- Comparison between expert rule parameters (mean and standard deviation) and estimated parameters (estimation and uncertainties) => Gaussian distributions comparison
- A score is given for each expert rule
- $\Rightarrow~$ Adaptable solution for identification and characterization
- \Rightarrow Deal with spectral mixtures (not validated yet)

Conclusions:

- 1) Automatic and modular procedure able to extract mineralogical information from reflectance spectra based on a physical model
- 2) Estimation procedure makes possible the physical interpretation of retrieved parameters
- 3) Mineral identification (and characterization) procedure using expert rules (expert system)

Future works:

- 1) Improvement and validation of the EGO model estimation procedure on simulated and real spectra
- 2) Application and validation of the identification/characterization procedure for spectral mixtures
- 3) Mineral characterization (abundance, grain size, humidity, etc.) and application on various study cases