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Valles Marineris

• One of the largest fault in the Solar System



Ophir Chasma
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Spectral analysis

1. Classification

• Supervised: knowing laboratory spectra

• GOAL: Where are the reference spectra ?

2. Radiative transfer inversion

• Quantitative estimation of surface properties



Mathematical problem
• Estimation of abundances, under constraints
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ponents (ICs), we have to pay attention to their physical
interpretation. In fact, additional knowledges can be used.
In this purpose: (i) synthetic reference spectra of the main
endmembers obtained after inversion [4]; (ii) a supervised
classification using wavalet transform called wavanglet
which is in accordance with Mars physical knowledge [5].
Finally, a last difficulty is to check the relevance of the
linear mixture model as well as the hypothesis on which
the algorithm is based.

From a methodological point of view, the objective of
this paper is to point out that, when source independence
assumption is not fully satisfied, an ICA algorithm can pro-
vide spurious ICs and one has to prefer semi-blind meth-
ods which relax partially independence assumption and ac-
counts for additional informations. Especially, in hyper-
spectral imaging an evident prior concerns the positivity of
the images and the component spectra.

The paper is organized as follows. Section 2 presents the
simplified observation model in the case of a geographi-
cal mixture and the possible decomposition models. Sec-
tion 3 recalls briefly the source separation problem. Section
4 presents the results when applying ICA to hyperspec-
tral data, and discuss the relevance of the separation. Sec-
tion 5 introduces the Bayesian framework and shows how
Bayesian methods can ensure the positivity of the sources
and of the mixing coefficients. The results on Mars hyper-
spectral data are then discussed. Section 7 recalls the main
results and gives some perspectives of this research work.

2. Hyperspectral Data Modeling

The OMEGA spectrometer, carried by Mars Express
spacecraft on an elliptical orbit, has a spatial resolution
range from 300 m to 4 km. This instrument has three chan-
nels, a visible channel and two near infrared channels. We
will focus in this work only on the near infrared channels
since the behavior between major chemicals can be dis-
criminated in this spectral range. The analysis is focused
on a data set consisting in a single hyperspectral data cube
obtained by looking to the South Polar Cap of Mars in
the local summer where CO2 ice, water ice and dust were
previously detected [5, 6]. This data cube is made up with
2 channels: 128 spectral planes from 0.93 µm to 2.73 µm
with a resolution of 0.013µm and 128 spectral planes from
2.55µm to 5.11µm with a resolution of 0.020µm. After cal-
ibration, the dimensionless physical unit used to express
the spectra is the ”reflectance”, which is the ratio between
the irradiance leaving each pixel toward the sensor and the
solar irradiance at the ground. Interactions between pho-
tons coming from the sun and the planet Mars, through its
atmosphere and surface, allows us to identify the different
compounds present in the planet. Those compounds are
mixed and usually different chemical species can be identi-
fied in each measured spectra. Two kinds of physical mixing
at the ground can be observed [7]:
– Geographic mixture: each pixel is a patchy area made

of several pure compounds. This type of mixture, some-
times called ”sub-pixel mixture”, happens when the spa-
tial resolution is not large enough to observe the complex
geological combination pattern. The total reflectance in
this case will be a weighted sum of the pure constituent
reflectances. The weights (abundance fractions) associ-
ated to each pure constituent are surface proportions in-
side the pixel.

– Intimate mixture: each pixel is made of one single terrain
type which is a mixture at less than the typical mean-
path scale (typically the order of 1mm scale). The total
reflectance in this case will be a nonlinear function of
pure constituent reflectances.

The case of intimate mixtures, which needs nonlinear source
separation methods and further development, is not ad-
dressed here. In this paper, we perform our analysis with
hypothesis of a geographical mixtures and hence linear mix-
ing models.

2.1. Observation Model

The hyperspectral images can be modeled by examining
all the factors that contribute to the radiance signal reach-
ing the sensor after interaction of the sunlight with a plan-
etary surface. An analytical expression of the measured ra-
diance factor in a case of a Lambertian surface 2 with a
homogeneous atmosphere has been proposed in [8], under
the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:

L(x, y, λ) =
(

ρa(λ) + Φ(λ)
P∑

p=1

αp(x, y) ρp(λ)

)
cos [θ(x, y)] (1)

where Φ(λ) is the spectral atmospheric transmission,
θ(x, y) the angle between the solar direction and the sur-
face normal (solar incidence angle), P the number of
endmembers in the region of coordinates (x, y), ρp(λ) the
spectrum of the p-th endmember, αp(x, y) its weight in
the mixture and ρa(λ) the radiation that did not arrive
directly from the area under view. This mixture model can
also be written as:

L(x, y, λ) =
P∑

p=1

α′
p(x, y) · ρ′p(λ) + E(x, y, λ) (2)

where

2 a surface that reflects the light independently of both incidence
and emergence directions

2
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• Property : linearly 
dependent 
spectra in the 
database give one 
single solution !
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To model the effect of :
• aerosols
• continuum
• surface roughness of the regolith
• grain size, shape roughness

• mixture (opaque, feldspar, ...)

Adding 
other 

spectra ?

Remove discrepancies between 
observed spectra and database
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Spectral database

• Selection of spectra for Mars

Schmidt, F.; Legendre, M. & Le Mouëlic, S. Minerals detection for hyperspectral images using adapted 
linear unmixing: LinMin Icarus, 2014, 237, 61-74, http://dx.doi.org/10.1016/j.icarus.2014.03.044

fitting. We also showed that the knowledge of the noise covariance matrix, that
can be estimated from dark current or using other techniques is important to
asses the detection limits.

IPLS is shown to be the best numerical algorithm to solve the MINESINE
problem. Its fast GPU implementation is particularly relevant for the treatment
of hyperspectral images. In the future, this methodology should be applied in
various planetary cases in order to study the surface geology. Also a signifi-
cant improvement of the mineral detection may be addressed by using spectral
database adapted to the context.
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Appendix

Name of the 32 spectra:
1 Inosilicate (Hypersthene OPX PYX02.h >250u) 12 Sulfate; Gypsum 23 Carbonate; Siderite

2 Inosilicate (Diopside CPX CRISM) 13 Sulfate; Jarosite 24 Phyllosilicate (Chlorite)

3 Olivine Fayalite CRISM 14 Sulfate; Kieserite 25 Muscovite GDS116 Tanzania

4 Olivine Forsterite CRISM 15 Epsomite USGS GDS149 26 Alunite GDS83 Na63

5 Phyllosilicate (Clay Montmorillonite Bentonite) 16 Oxide; Goethite 27 Atmospheric Transmission

6 Phyllosilicate (Clay Illite Smectite) 17 Oxide; Hematite 28 H2O grain 1

7 Phyllosilicate (Serpentine Chrysotile Clinochry.) 18 Oxide; Magnetite 29 H2O grain 100

8 Phyllosilicate (Serpentine Lizardite) 19 Ferrihydrite USGS GDS75 Sy F6 30 H2O grain 1000

9 Phyllosilicate (Clay Illite) 20 Maghemite USGS GDS81 Sy (M-3) 31 CO2 grain 100

10 Phyllosilicate (Clay Kaolinite) 21 Carbonate; Calcite 32 CO2 grain 10 000

11 Phyllosilicate (Nontronite) 22 Carbonate; Dolomite

Name of the 12 additional spectra:
33 Flat 1 37 cos 1/4 41 cos 1/2

34 Flat 0.0001 38 sin 1/4 42 sin 1/2
35 Slope Increasing 39 -cos 1/4 43 -cos 1/2
36 Slope Decreasing 40 -sin 1/4 44 -sin 1/2
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Figure 2: 32 Reference spectra of minerals, ice and atmospheric gas representing major classes
of contributions of surface spectra. See Appendix for the names.

• 90% is a flat component at reflectance 0.35 in agreement with OMEGA
studies Vincendon in order to reproduce the low level and flatness of actual
Martian spectra. The flatness is also representative of the Moon or other
planetary surface.

• 10% of a random mixture of two over 32 reference spectra with random
uniform mixing coe�cients, noted as A0. For each endmember i, there
is ~30 spectral mixture with non-null mixing coe�cient (noted Apositive)
and ~970 with null mixing coe�cient (Afalse).

We add synthetic noise, simulating the noise level of a typical OMEGA
observation after gas correction (covariance matrix from dark current noise of
ORB41_1, which has an wavelength-average standard deviation of 1.3� 10�3).
Other noise statistics can be used, such MNF shift di⌧erence from ENVI soft-
ware, but we point the fact that OMEGA dark current is archived, estimating
the minimum noise statistics (excluding spike and other non-linear e⌧ects).

On a desktop with Dual Core at 2.53 Ghz with 4Go RAM memory, the
typical computation time to solve the non-normalized problem of eq. 2 on
M = 104000 spectra with (1000 mixture of spectra and 104 values of AOT, see
next section), N� = 110, N = 44 are : 3.3 h for BI-ICE, 4.5 min for IPLS, 1.2
h for Simplex Projection. The estimated mixing coe�cients are noted AIPLS ,
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Algorithm

• Primal-dual interior-point

• GPU implementation

Chouzenoux, E.; Legendre, M.; Moussaoui, S. & Idier, J. Fast Constrained Least Squares 
Spectral Unmixing Using Primal-Dual Interior-Point Optimization Selected Topics in 
Applied Earth Observations and Remote Sensing, IEEE Journal of, 2014, 7, 59-69, http://
dx.doi.org/10.1109/JSTARS.2013.2266732
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ponents (ICs), we have to pay attention to their physical
interpretation. In fact, additional knowledges can be used.
In this purpose: (i) synthetic reference spectra of the main
endmembers obtained after inversion [4]; (ii) a supervised
classification using wavalet transform called wavanglet
which is in accordance with Mars physical knowledge [5].
Finally, a last difficulty is to check the relevance of the
linear mixture model as well as the hypothesis on which
the algorithm is based.

From a methodological point of view, the objective of
this paper is to point out that, when source independence
assumption is not fully satisfied, an ICA algorithm can pro-
vide spurious ICs and one has to prefer semi-blind meth-
ods which relax partially independence assumption and ac-
counts for additional informations. Especially, in hyper-
spectral imaging an evident prior concerns the positivity of
the images and the component spectra.

The paper is organized as follows. Section 2 presents the
simplified observation model in the case of a geographi-
cal mixture and the possible decomposition models. Sec-
tion 3 recalls briefly the source separation problem. Section
4 presents the results when applying ICA to hyperspec-
tral data, and discuss the relevance of the separation. Sec-
tion 5 introduces the Bayesian framework and shows how
Bayesian methods can ensure the positivity of the sources
and of the mixing coefficients. The results on Mars hyper-
spectral data are then discussed. Section 7 recalls the main
results and gives some perspectives of this research work.

2. Hyperspectral Data Modeling

The OMEGA spectrometer, carried by Mars Express
spacecraft on an elliptical orbit, has a spatial resolution
range from 300 m to 4 km. This instrument has three chan-
nels, a visible channel and two near infrared channels. We
will focus in this work only on the near infrared channels
since the behavior between major chemicals can be dis-
criminated in this spectral range. The analysis is focused
on a data set consisting in a single hyperspectral data cube
obtained by looking to the South Polar Cap of Mars in
the local summer where CO2 ice, water ice and dust were
previously detected [5, 6]. This data cube is made up with
2 channels: 128 spectral planes from 0.93 µm to 2.73 µm
with a resolution of 0.013µm and 128 spectral planes from
2.55µm to 5.11µm with a resolution of 0.020µm. After cal-
ibration, the dimensionless physical unit used to express
the spectra is the ”reflectance”, which is the ratio between
the irradiance leaving each pixel toward the sensor and the
solar irradiance at the ground. Interactions between pho-
tons coming from the sun and the planet Mars, through its
atmosphere and surface, allows us to identify the different
compounds present in the planet. Those compounds are
mixed and usually different chemical species can be identi-
fied in each measured spectra. Two kinds of physical mixing
at the ground can be observed [7]:
– Geographic mixture: each pixel is a patchy area made

of several pure compounds. This type of mixture, some-
times called ”sub-pixel mixture”, happens when the spa-
tial resolution is not large enough to observe the complex
geological combination pattern. The total reflectance in
this case will be a weighted sum of the pure constituent
reflectances. The weights (abundance fractions) associ-
ated to each pure constituent are surface proportions in-
side the pixel.

– Intimate mixture: each pixel is made of one single terrain
type which is a mixture at less than the typical mean-
path scale (typically the order of 1mm scale). The total
reflectance in this case will be a nonlinear function of
pure constituent reflectances.

The case of intimate mixtures, which needs nonlinear source
separation methods and further development, is not ad-
dressed here. In this paper, we perform our analysis with
hypothesis of a geographical mixtures and hence linear mix-
ing models.

2.1. Observation Model

The hyperspectral images can be modeled by examining
all the factors that contribute to the radiance signal reach-
ing the sensor after interaction of the sunlight with a plan-
etary surface. An analytical expression of the measured ra-
diance factor in a case of a Lambertian surface 2 with a
homogeneous atmosphere has been proposed in [8], under
the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:

L(x, y, λ) =
(

ρa(λ) + Φ(λ)
P∑

p=1

αp(x, y) ρp(λ)

)
cos [θ(x, y)] (1)

where Φ(λ) is the spectral atmospheric transmission,
θ(x, y) the angle between the solar direction and the sur-
face normal (solar incidence angle), P the number of
endmembers in the region of coordinates (x, y), ρp(λ) the
spectrum of the p-th endmember, αp(x, y) its weight in
the mixture and ρa(λ) the radiation that did not arrive
directly from the area under view. This mixture model can
also be written as:

L(x, y, λ) =
P∑

p=1

α′
p(x, y) · ρ′p(λ) + E(x, y, λ) (2)

where

2 a surface that reflects the light independently of both incidence
and emergence directions
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the following assumptions: (i) the multiple diffusion term
r and the diffusion terms E(µ) are negligible, (ii) the path
through the atmosphere is equivalent for all pixels, (iii) the
direct atmospheric contribution only depends on the wave-
length, (iv) the emergence direction is always the same.
Thus, based on this model and using the geographic mix-
ture assumption, the radiance factor at location (x, y) and
at wavelenght λ satisfies the following observation model:

L(x, y, λ) =
(

ρa(λ) + Φ(λ)
P∑

p=1

αp(x, y) ρp(λ)

)
cos [θ(x, y)] (1)

where Φ(λ) is the spectral atmospheric transmission,
θ(x, y) the angle between the solar direction and the sur-
face normal (solar incidence angle), P the number of
endmembers in the region of coordinates (x, y), ρp(λ) the
spectrum of the p-th endmember, αp(x, y) its weight in
the mixture and ρa(λ) the radiation that did not arrive
directly from the area under view. This mixture model can
also be written as:

L(x, y, λ) =
P∑

p=1

α′
p(x, y) · ρ′p(λ) + E(x, y, λ) (2)

where

2 a surface that reflects the light independently of both incidence
and emergence directions

2

min ||↵p.⇢p � L||
min ||↵p.⇢p � L||, ↵p > 0,

P
↵p = 1

1

Legendre, M.; Capriotti, L.; Schmidt, F.; Moussaoui, S. & Schmidt, A. 
GPU implementation issues for fast unmixing of hyperspectral images 
EGU General Assembly Conference Abstracts, 2013, 15, 11686,

Schmidt, F.; Legendre, M. & Le Mouëlic, S. Minerals detection for hyperspectral images using adapted 
linear unmixing: LinMin Icarus, 2014, 237, 61-74, http://dx.doi.org/10.1016/j.icarus.2014.03.044

http://dx.doi.org/10.1109/JSTARS.2013.2266732
http://dx.doi.org/10.1109/JSTARS.2013.2266732
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Synthetic test 1

• Synthetic spectra of:

• 90% Flat at 0.35 (average Mars)

• 10% random mixture of one/two components

• Radiative transfer : 

• DISORT : non-linear

• Martian aerosols from AOT=0 to AOT=100

• Adding instrumental noise from dark current

Lin, Z.; et al.,Improved discrete ordinate solutions in the presence of an anisotropically reflecting 
lower boundary: Upgrades of the DISORT computational tool Journal of Quantitative Spectroscopy 
and Radiative Transfer, 2015, 157, 119 - 134, http://dx.doi.org/http://dx.doi.org/10.1016/j.jqsrt.
2015.02.014

Wolff, M. et al., Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer J. Geophys. 
Res., 2009, 114, E00D04-, http://dx.doi.org/10.1029/2009JE003350 
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Figure 4: Examples of results using the IPLS algorithm, with renormalization and 12 addi-
tional spectra on the case of a pure gypsum spectra (10% in abundance). On left : with
di◆erent atmospheric load from AOT=1 to AOT=100. On right : with di◆erent grain size
factor, from x1000 to x1/1000.
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Synthetic test 2

• Pure mineral spectra :

• Grain size factor using Shkuratov theory 
from x1/1000 to x1000

• Adding instrumental noise from dark 
current

Schmidt, F.; Legendre, M. & Le Mouëlic, S. Minerals detection for hyperspectral images using adapted 
linear unmixing: LinMin Icarus, 2014, 237, 61-74, http://dx.doi.org/10.1016/j.icarus.2014.03.044

Shkuratov, Y.; Starukhina, L.; Hoffmann, H. & Arnold, G. A Model of 
Spectral Albedo of Particulate Surfaces: Implications for Optical 
Properties of the Moon Icarus, 1999, 137, 235-246, http://
www.sciencedirect.com/science/article/B6WGF-45GMFKB-5T/
2/2b056567d27e74edbaf976c01f89d10f
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Figure 4: Examples of results using the IPLS algorithm, with renormalization and 12 addi-
tional spectra on the case of a pure gypsum spectra (10% in abundance). On left : with
di◆erent atmospheric load from AOT=1 to AOT=100. On right : with di◆erent grain size
factor, from x1000 to x1/1000.
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Results on Ophir, Valles 
Marineris

• Indurated rocks made 
of :

• Orthopyroxene

• Olivine

• Kieserite

• ultramafic rock, 
altered by aqueous 
processes
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