

DART Tutorial 2023

Contact: jean-philippe.gastellu@cesbio.cnes.fr, yingjie.wang@univ-tlse3.fr, omar.regaieg@univ.tlse3.fr

The DART model Developed since 1992 at CESBIO (www.cesbio.cnrs.fr/dart) - Toulouse III University, CNES, CNRS, IRD, INRAE -	DART (https://dart.omp.eu) is an ever-evolving radiative transfer model. It simulates the 3D radiative budget (RB), including sun induced chlorophyll fluorescence (SIF), and remote sensing (RS) satellite, airborne and in-situ signals (spectroradiometer image, LiDAR FWF, SPL, point cloud) of natural and urban landscapes, from visible to thermal infrared. It is a reference tool for a wide range of RS studies (sensitivity studies, inversion of RS images, design of new RS sensor, etc.). Licenses are free for research and education.
Objective of	To discover/deepen DART theory, functionalities and use in 5 steps: 1) Short review of physical bases,
the tutorial	 2) DART theory, functionalities and novelties (DART-Lux bi-directional MC, texture, etc.) 3) Study of schematic cases through prepared exercises, 4) Presentation of Pytools4DART, and
	5) Case studies of interest to each participant.
Program of	1. SHORT REVIEW OF PHYSICAL BASES (optical remote sensing, radiative budget) Radiance, reflectance, emissivity, brightness temperature, radiative budget, etc.
the training	2. DART THEORY AND FUNCTIONALITIES
	a) Theory: standard DART-FT and latest DART-Lux (bi-directional Monte Carlo)
	b) Major functionalities (interactive presentation)
	 <u>Mode of operation</u>: spectroradiometer (modes R, T, R+T), LiDAR, RB.
	• Landscape modeling:
	 <u>Landscape modeling:</u> Geometry: scene dimensions, spatial resolution, topography, coordinates, etc. Components: * directly simulated trees, houses, crops, topography, etc. * imported 3D element and landscape (urban database, tree, etc.) *4 basic elements (facets, turbid (vegetation), fluid (air, water), atmosphere). Optical properties: surface (anisotropic facets) & volume (turbid, fluid and air) Atmosphere: gas and aerosol vertical profiles. DART remote sensing (RS) and radiative budget (RB) products LUT (SQL database) creation/management with the DART sequencer Post processing tools: correction of topographic effects, satellite broad bands Use of command lines: DART, its modules and its sequences

Délégation Midi Pyrénées Service des Ressources Humaines <u>Bureau de la Formation Permanente</u>

Program of the training

Sentinel-2 DART DART Sentinel 2 inversion Basel city (5kmx6km)

3. PRACTICE OF DART WITH EXERCISES, FROM SIMPLE TO COMPLEX

3.a Flat surfaces - VIS / NIR / TIR spectral domains

Basic DART functionalities are introduced with simple 2D landscapes: scene creation, simulation of images (irradiance, albedo, exitance, directional radiance / reflectance / brightness temperature), radiative budget, sequence of simulations (landscape reflectance spectra, satellite broad bands, time series, etc.).

<u>Example of basic case study</u>: for which experimental / instrumental configuration, can we detect a fire in a thermal infrared (TIR) pixel? Can we distinguish ice and ground TIR pixels with the same thermodynamic temperature?

3.b *Simulation of realistic 3D landscapes*

The presentation focuses on functionalities / landscapes of interest to attendees:

- Atmosphere simulation: gas and aerosol models, atmosphere geometry, etc.
- Creation of complex forest, agricultural or urban scene with topography, etc.
- Importation of 3D elements and /or landscapes
- Simulation of fluorescence, LiDAR, etc.
- 4. **PRESENTATION OF PYTOOLS4DART** (https://gitlab.com/pytools4dart/pytools4dart)

API python created by TETIS (www.umr-tetis.fr) for DART massive simulations.

5. IMPLEMENTATION BY EACH PARTICIPANT OF HIS/HER OWN CASE STUDY

- Radiative budget: forest, urban landscape, etc.

- Scene creation (forest, crop, etc.) with imported 3D objects (tree, maize, etc.)
- Sensitivity studies (e.g., variation of forest reflectance / brightness temperature with LAI, view direction, topography, thermodynamic temperature).
- Inversion of satellite image of city as map of optical property per urban element
 LiDAR: waveform, solar noise, 3D points derived from waveforms, etc.

Audience	No specific requirements. PCs are provided, but to bring a "good" laptop is advised
Advice (before the training)	Get a free DART license & User Manual (https://dart.omp.eu). Transmit your case study
Number of participants	14
Date	June 12 / 13 / 14, 2023 (9 am - 6 pm)
Registration deadline	April 28, 2023

Place of DART tutorial Toulouse III University,1 Rue Tarfaya, 31400 Toulouse (https://www.mfja.fr), room 313

 Service des Ressources Humaines - Pôle Accompagnement des Parcours Professionnels

 Hélène Feuillerat - 27 05 61 33 60 05 - Helene.Feuillerat@dr14.cnrs.fr

 16 avenue Edouard Belin – BP 24367 - 31055 Toulouse cedex 4 - http://www.cnrs.fr/midi-pyrenees