

#### Evaluation de la contribution d'un capteur satellitaire hyperspectral (BIODIVERSITY) pour la cartographie de la composition de l'eau, l'estimation de la bathymétrie et la composition des fonds en milieu littoral et lacustre

Projet HYPCOLAC

2019-2021

Audrey Minghelli<sup>1</sup>, <u>audrey.minghelli@univ-tln.fr</u>, Malik Chami<sup>2</sup>, <u>malik.chami@upmc.fr</u>, Sayoob Vadakke-Chanat<sup>1</sup>, <u>sayoob@gmail.com</u>, Mireille Guillaume<sup>3</sup> <u>mireille.guillaume@fresnel.fr</u>



<sup>1</sup> Université de Toulon, Seatech, Laboratoire LIS UMR-CNRS 7020
<sup>2</sup> Sorbonne Université (ex-UPMC), Laboratoire Atmosphères Milieux Observations Spatiales (LATMOS)
<sup>3</sup> Institut Fresnel, Ecole Centrale, Marseille



# Etude en zones côtières (Porquerolles)



#### Données

- Images hyperspectrales aériennes (HYSPEX)
- Spectres des fonds (ASD)
- Mesures de qualité de l'eau (chl, SPM, CDOM)
- Vérité de terrain (Vortex Ifremer)
- Bathymétrie Litto3D









15

20 (m)

# Méthodologie



# Simulation de capteurs : Intégration spatiale et spectrale

| Capteur      | Total nb de bandes -<br>400 <nb bandes<700nm<="" th=""><th>FHWM (nm)</th><th>Domaine<br/>(nm)</th><th>Résolution</th></nb> | FHWM (nm)             | Domaine<br>(nm) | Résolution |
|--------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|------------|
| HYSPEX       | 160-79                                                                                                                     | 4,5                   | [404-990]       | 1 m        |
| BIODIVERSITY | 53-26                                                                                                                      | 10                    | [413-990]       | 8 m        |
| ENMAP        | 88-43                                                                                                                      | 7 nm                  | 415-1000        | 30 m       |
| HICO         | 87-50                                                                                                                      | 10(<750) & 20(>750nm) | 410-1000        | 90 m       |

SNR

HICO



#### ENMAP







### Simulations BIODIVERSITY

Images simulées :

53 bandes spectrales 8 m de résolution



Sans bruit







Avec bruit réaliste

Compositions colorées (440, 552, 680 nm)

#### Méthode d'Estimation



Estimation de paramètres (inversion)

#### Estimations BIODIVERSITY (colonne d'eau)

# 10 15 z (m) 5 n Chl (mg/m<sup>3</sup>) SPM (g/m<sup>3</sup>) Cdom (m<sup>-1</sup>) Sans bruit Avec bruit optimiste

0.25

0

0.5

0.75

1 (chl, spm,cdom

20 (z)

#### Estimations BIODIVERSITY (fonds)

#### S) 0 0.25 0.5 0.75 1 Abondance Taxifolia Algues photophiles





Posidonie







Sans bruit

# Validation des estimations HYSPEX 1m sur la composition des fonds



# Validation des estimations BIODIVERSITY 8 m sur la composition des fonds



sable posi taxi

### Conclusion sur les zones côtières

- L'étude sur le site de Porquerolles a montré que la cartographie des fonds est possible jusqu'à 10 m de profondeur avec HYSPEX mais pas avec BIODIVERSITY
- Les simulations BIODIVERSITY avec 53 bandes, 8 m de résolution et un bruit optimiste montrent que BIODIVERSITY permettra de mieux estimer les paramètres de la colonne d'eau (Chl, SPM, CDOM et profondeur) qu'avec ENMAP ou HICO.
- BIODIVERSITY avec bruit optimiste permettra une cartographie de fonds pour des pixels composés d'un seul type de matériau (e.g., sable ou posidonie), en particulier pour z < 10 m. En revanche, des difficultés sont observées pour estimer des pixels composés de mélanges de fonds (e.g., sable + posidonie).
- Article publié : A. Minghelli, S. Vadakke-Chanat, M. Chami, M. Guillaume and M. Peirache, (2021) "Benefit of the potential future hyperspectral satellite sensor (BIODIVERSITY) for improving the determination of water column and seabed features in coastal zones", in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, (14), 1222-1232, doi: 10.1109/JSTARS.2020.3031729

## Etude en eaux continentales (Camargue)



#### Introduction

- Les eaux continentales (comme les eaux côtières) sont des eaux complexes où plusieurs éléments influencent la réflectance
- Caractéristiques des eaux intérieures : faibles profondeurs mais fortes concentrations
- Estimation bathymétrique et cartographie des fonds déjà testées en eaux continentales avec des capteurs hyperspectraux aériens.
- Dans cette étude nous voulions analyser le potentiel du capteur hyperspectral satellite BIODIVERSITY pour estimer la bathymétrie et cartographier les fonds
- Et le comparer par rapport à des capteurs satellites existants (DESIS)

### Site d'étude



- La Camargue
- Problématiques :
  - Décroissance des zostères
  - Augmentation des algues rouges et vertes
  - Pollution par l'agriculture industrielle environnante

#### Données

- Images hyperspectrales HYSPEX
- Spectres des fonds
- Mesures in situ (chl, SPM, cdom)
- ACS, BB3 et TRIOS
- Données de validation bathymétriques
- Images subaquatiques (SILIOS)









| è                 | Stations | Chla (µg/l) | SPM (mg/l) | CDOM (m <sup>-</sup><br>1) |
|-------------------|----------|-------------|------------|----------------------------|
|                   |          |             |            | at 440 nm                  |
|                   | 01       | 0.92        | 3.058      | 0.43                       |
|                   | 02       | 1.29        | 29.231     | 0.38                       |
| $\langle \rangle$ | 03       | 2.04        | 3.504      | 0.72                       |
|                   | 04       | 1.74        | 6.498      | 0.36                       |
|                   | 05       | 1.1         | 1.171      | 0.43                       |
|                   | 06       | 0.71        | 2.024      | 0.38                       |
|                   | 07       | 0.79        | 2.147      | 0.36                       |
|                   | 08       | 2.62        | 5.178      | 0.47                       |
|                   | 09       | 2.24        | 3.676      | 0.41                       |
|                   | 10       | 0.96        | 2.847      | 0.4                        |



#### Simulations BIODIVERSITY

Image simulée : 53 bandes spectrales 8 m de résolution



Sans bruit

Bruit optimiste

Bruit réaliste

#### Estimations BIODIVERSITY (colonne d'eau)



#### Bathymétrie et validation



|   |     |   |     |       | RMSE = 0.28 m |
|---|-----|---|-----|-------|---------------|
| 0 | 0.5 | 1 | 1.5 | 2 (m) | RE(%)=14.11   |



Distance from the West side of the lagoon (m)

Distance from the North side of the lagoon (m)

#### Cartographie des fonds avec BIODIVERSITY



0 25 50 75 100 Abundance (%)

#### Validation des fonds

Avec des images subaquatiques



|            | Sediments |    | Zosters   |    | Green algae |    | Red algae |    |
|------------|-----------|----|-----------|----|-------------|----|-----------|----|
|            | Satellite | UW | Satellite | UW | Satellite   | UW | Satellite | UW |
| <b>S1</b>  | 0         | 6  | 0         | 0  | 53          | 45 | 47        | 49 |
| <b>S2</b>  | 0         | 0  | 66        | 84 | 0           | 0  | 34        | 16 |
| <b>S</b> 3 | 11        | 16 | 0         | 0  | 39          | 62 | 50        | 22 |
| <b>S4</b>  | 21        | 13 | 56        | 67 | 0           | 12 | 23        | 8  |
| S5         | 26        | 13 | 0         | 0  | 55          | 78 | 19        | 9  |

Avec des mesures in situ de couverture en macrophytes



Couverture en %

#### Validation des fonds



#### Image DESIS

- 1/2/2020
- 30 m de résolution
- 400-1000 nm
- Échantillonnage 2.55nm
- FWHM de 3.5 nm



#### Bathymétrie et validation



RMSE=0.38 m RE(%)=17%

## DESIS image

• 4/9/2019







#### Conclusion

- L'étude sur le site de la Camargue a montré que la bathymétrie ainsi que la cartographie des fonds étaient possibles avec le capteur BIODIVERSITY même en eau moyennement turbide.
- Les simulations BIODIVERSITY avec 53 bandes, 8 m de résolution et un bruit optimiste montrent que BIODIVERSITY permettra de mieux estimer la bathymétrie (RMSE = 0.28 m, RE=14%) qu'avec DESIS (RMSE=0.38 m, RE=17%)
- La comparaison avec des mesures de terrain a montré un bon accord R<sup>2</sup> = 0.77 (images sub-aquatiques) et R<sup>2</sup> = 0.8 (mesures in situ des habitats bentiques) comparé à DESIS (R<sup>2</sup> = 0.68)
- Article publié: A. Minghelli, S. Vadakke-Chanat, M. Chami, M. Guillaume, E. Migne, P. Grillas and O. Boutron, (2021) "Estimation of Bathymetry and Benthic Habitat Composition from Hyperspectral Remote Sensing Data (BIODIVERSITY) Using a Semi-Analytical Approach", in in Remote Sens., 13(8), https://doi.org/10.3390/rs13081444