Microphysics of Europa's Cnes surface using Galileo/NIMS data université PARIS-SAC

Guillaume Cruz-Mermy, F. Schmidt, F. Andrieu, I. Belgacem, T. Cornet

Surface morphology

Dilatation bands

Credit: NASA/JPL-Caltech/SETI Institute

Howell & Pappalardo, 2020

- Hemispherical dichotomy \bullet (Leading Vs Trailing)
 - Ridges, Linea, Bands, Craters
 - Various spatial extension
 - Endogenic Vs Exogenic
- Surface : key witness

Surface composition

UV-VIS-NIR Spectroscopy

- Water ice (crystalline/amorphous)
 - Kuiper et al. (1957), Calvin et al. (1995)
- Sulfuric Acid Octahydrate (SAO)
 - Carlson et al. (1999, 2005), Mishra et al. (2021)
- Hydrated sulfates
 - McCord et al. (1998), Dalton et al. (2007, 2012), Ligier et al. (2016), King et al. (2022)
- Chlorinates
 - Brown et al. (2013), Hanley et al. (2014), Ligier et al. (2016), Trumbo et al. (2020)
- Oxidants
 - Carlson et al. (1999), Hand et al. (2006), Trumbo et al. (2019)

Hydrated sulfates distribution, from King et al. (2022)

NaCl distribution, from Trumbo et al. (2020)

Why studying the surface?

- **Previous studies:**
 - Linear mixture model / Hapke model
 - Spectral comparison
 - Low spatial resolution observations
- **Objectives:**
 - Use accurate radiative transfer & bayesian approach
 - Use Galileo/NIMS high spatial resolution images \bullet
 - Differentiate between endogenous and exogenous processes

What is the true surface composition? What is the ice microphysics?

Galileo/NIMS hyperspectral data

- NIR wavelengths:
 0.7 5.2 μm
- Spectral resolution:
 0.125 0.250 μm
- Spatial resolution up to 2.5 km/pixel (flyby)

All observation with spatial resolution < 10 km/pixel

Galileo/NIMS hyperspectral data

- NIR wavelengths:
 0.7 5.2 μm
- Spectral resolution:
 0.125 0.250 μm
- Spatial resolution up to 2.5 km/pixel (flyby)

All observation with spatial resolution < 10 km/pixel

Bright plains

Bright plains

Dark lineaments

Bright plains

Dark lineaments

Reference spectrum

- Good spectral res.
- Distorted absorption bands
- Hard to fit !

Compound selection

- Volume abundance, Grain size, Surface roughness •
- Bayesian MCMC
 - DEMCz algorithm (Python mc3): Cubillos et al. (2016)

Which compounds to use ? Test all combinations !

455, 1365 and 3003 combinations k = 3, 4 and 5

- Volume abundance, Grain size, Surface roughness
- Bayesian MCMC
 - DEMCz algorithm (Python mc3): Cubillos et al. (2016)

Which compounds to use ? Test all combinations !

455, 1365 and 3003 combinations k = 3, 4 and 5

- Volume abundance, Grain size, Surface roughness
- Bayesian MCMC
 - DEMCz algorithm (Python mc3): Cubillos et al. (2016)

Which compounds to use ? Test all combinations !

455, 1365 and 3003 combinations k = 3, 4 and 5

Typical fit

 H_2O $MgSO_4.6H_2O$ $H_2SO_4.8H_2O$ $MgCl_2.4H_2O$ $NaSO_4.10H_2O$

 Data uncertainty: 10% (Carlson et al., 1992)

- 2 scenarios:
 - SNR of 5 (20% uncertainties)
 - SNR of 50 (2% uncertainties)

• 20% uncertainties: All acceptable

• 20% uncertainties: All acceptable

• 2% uncertainties: few acceptable !

• 2% uncertainties: few acceptable !

Best fit with RMS < 0.0116 | 21 spectra | 4 endmembers

2% uncertainties scenario

Sulfuric Acid Octahydrate

Water Ice

Hexahydrite **Bloedite**

Selection criteria

- RMS comparison
 Goodness of fit per end member

Criteria	$\mathrm{H}_2\mathrm{SO}_4$	$\rm H_2O$	MgSO_4	$\mathrm{Na}_{2}\mathrm{Mg}(\mathrm{SO}_{4})_{2}$	$\rm H_2O$	MgSO_4	$(\mathrm{NH}_4)_2$	$\mathrm{Na}_2\mathrm{SO}_4$	$\mathrm{Mg}(\mathrm{ClO}_3)_2$	${\rm Mg}({\rm ClO}_4)_2$	MgCl_2	NaCl	MgCl_2	$NaClO_4$
	$8\mathrm{H}_{2}\mathrm{O}$	(cr)	$.6H_2O$	$.4H_2O$	(am)	$7\mathrm{H}_{2}\mathrm{O}$	SO_4	$10H_2O$	$6H_2O$	$6H_2O$	$6\mathrm{H}_{2}\mathrm{O}$		$4\mathrm{H}_{2}\mathrm{O}$	$2H_2O$
RMS (SNR 5)	1	1	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0
Improvement factor (SNR 5)	1	1	1	1	1	1	1	0.5	0	0	0	0	0	0
Distribution (SNR 50)	1	0.5	0.5	0.5	0.5	0	0	0	0.5	0	0	0	0	0
Numerical Abundances (SNR 50)	1	0	0.5	0.5	0	0.5	0	0.5	0.5	0.5	0.5	0.5	0	0
Average	1	0.625	0.625	0.625	0.5	0.5	0.375	0.25	0.25	0.125	0.125	0.125	0	0

- Spectral improvement factor
 Spectral contribution per endmember
- Endmembers distribution
 Statistics on all acceptable fits
- Numerical abundance
 Representation of the medium

Conclusion: surface composition

- Very good spectral fit to NIMS data without artificial compounds and/or high porosity
- Water ice & Sulfuric Acid Octahydrate: Mandatory
- Hydrated Sulfates & Chlorinates: Indistinguishable but required
- Magnetite, Magnesium Chloride, Sodium perchlorate: not necessary or absent

Conclusion: surface composition

- Very good spectral fit to NIMS data without artificial compounds and/or high porosity
- Water ice & Sulfuric Acid Octahydrate: Mandatory
- Hydrated Sulfates & Chlorinates: Indistinguishable but required
- Magnetite, Magnesium Chloride, Sodium perchlorate: not necessary or absent

lcarus Available online 2 December 2022, 115379 In Press, Journal Pre-proof ⑦

Research Paper

Selection of chemical species for Europa's surface using Galileo/NIMS

G. Cruz Mermy ^a 😤 🖾, F. Schmidt ^{a, b}, T. Cornet ^c, I. Belgacem ^d, N. Altobelli ^d

Show more 🗸

🕂 Add to Mendeley 😪 Share 🌗 Cite

https://doi.org/10.1016/j.icarus.2022.115379

Get rights and content

Microphysics: grain size & abundance

 All 21 and 153 acceptable combinations

 MCMC modeling with 2% uncertainties

 Probability Density Function

Cruz-Mermy et al. (2023) In prep

Microphysics: surface roughness

Cruz-Mermy et al. (2023) In prep

5C | All MCMC chains | Roughness