Capgemini la ruche bee creative.

AI4EO CHALLENGE SEEING BEYOND THE VISIBLE

06/07/2023

INTRODUCTION

AI4EO Challenge : Seeing Beyond the Visible

Organizers and partner

Goal

Autonomous space solutions company (Poland)

European Space Agency

Precision farming software company (Poland)

Generate a model for prediction of **soil parameters** from **hyperspectral imaging** data of agricultural areas

Timeline

From the 9th of February to the 1st of July 2022

Prizes

Best predictive model will be deployed on Intuition-1 satellite set to launch in Q1 2023 Top 5 teams invited for joint-paper publication

Soil parameter estimation for sustainable farming

- As the global population is increasing, there is a growing need for more **efficient** methods of **food production**
- **Macro-nutrients** (N, K, P, ...) have a direct impact on agriculture yields, and are commonly supplied in the form of **fertilizers**
- Excessive use of fertilizers has a **detrimental** impact on **biodiversity** and **public health**
- Methods of soil property **estimation** from **reflectance spectra** will help minimize resource input and make farming more sustainable (precision farming)

Resources :

Chabrillat, et al. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv Geophys 40, 361–399 (2019). https://doi.org/10.1007/s10712-019-09524-0 Burton, et al. 2020, J. Electrochem. Soc. https://doi.org/10.1149/1945-7111/ab6f5d

DATA SET ACQUISITION

Challenge dataset

Training set 1732 patches Known soil parameters

RGB representation of patches:

Yellow outline : masks delimiting parcels

Soil Parameters :

P2O5 : Phosphorus content of fertilizersK : PotassiumMg : MagnesiumPH : measure of soil acidity

Spectral range :

150 bands : 462-942nm, 3.2nm resolution Visible range and early Near-Infrared

Spatial resolution :

Testing set 1154 patches Unknown soil parameters

Limited, high dimension and heterogeneous

Correlation between band reflectance and soil parameters

Very **Weak correlation** (< 0.12) between reflectance per wavelength and soil parameters Note : Correlation between Vegetation Index and soil parameters also low : ~0 R-squared value

How to develop a predictive model for soil parameters from hyperspectral imaging data ?

Challenge scoring of testing set parameters predictions :

$$Score = \sum_{i=1}^{4} \left(\frac{MSE_i}{MSE_i^{base}}\right) / 4 \quad with: MSE_i = \frac{\sum_{j=1}^{|\psi|} (p_j - \hat{p}_j)^2}{|\psi|}$$

Challenge score : Ratio of MSE (mean square error) of predictions over MSE of base solution, averaged over the four parameters

Lower score = **Better** predictions

How to develop a predictive model for soil parameters from hyperspectral imaging data ?

Challenge scoring of testing set parameters predictions :

$$Score = \sum_{i=1}^{4} \left(\frac{MSE_i}{MSE_i^{base}}\right) / 4 \quad with: MSE_i = \frac{\sum_{j=1}^{|\psi|} (p_j - \hat{p}_j)^2}{|\psi|}$$

Challenge score : Ratio of MSE (mean square error) of predictions over MSE of base solution, averaged over the four parameters

Lower score = **Better** predictions

Main obstacles :

- Low sample size (1732 for training set), high heterogeneity
- High dimensionality
- Those soil nutrients usually do not display clear absorption features

DATA PRE-PROCESSING

Pre-processing

Pre-processing

RESULTS

RESULTS

- Several methods of Machine Learning have been implemented, in order to choose the best prediction model.
- Using cross validation to choose the best hyperparameters of ML models and analyse the contribution of spectrum transformations and dimension reduction
- ✓ Best submission scores :

Random Forest predictions

- Prediction distribution centred around parameter mean
- ✓ Model performs better for **pH**, worse for **P205**

RESULTS

Model	Date	Score officiel	Cross- validation	P2O5	к	Mg	рΗ	Pre-processing	Parameters	Comments
RandomForest		0,816	0,860	0,919	0,851	0,865	0,803	Mean of sample > (Transfo : FD/SD/CR) > StandardScaler > PCA > Concatenation of n first PCA axis for each transfo (n*4 feature total)	RF : bootstrap = False, max_features = log2 (P) / sqrt (K, Mg, pH), n_estimator = 10000, min_samples_leaf = 2/4	40 pca axis for P (160 total), 35 for K, Mg (140 total), 50 for pH (200 total) 2ème soumission (19/06) : 0,817

CONCLUSION

Ø First step for sustainability agriculture

> Asset to France 2030 program support by Science&IA, C&CA offer

Prospects : Space Agencies, Env & Agriculture Ministry, Carbon Farming

MERCI DE VOTRE ATTENTION

This presentation contains information that may be privileged or confidential and is the property of the Capgemini Group.

Copyright © 2022 Capgemini. All rights reserved.

