Modélisation de la bathymétrie par Pléiades Neo en Baie de Saint-Malo: transfert radiatif et Réseaux de neurones

Antoine Collin

Centre de GéoEcologie Littorale Ecole Pratique des Hautes Etudes PSL Université Paris

5 octobre 2023 B 612 Toulouse, France

École Pratique des Hautes Études

CGE

Toulouse, France

Pourquoi cartographier la bathymétrie?

Seulement 25% de la bathymétrie mondiale a été compilée et contrôlée à 30 arc-second (926 m à l'équateur)

Comment cartographier la bathymétrie?

- Economique et adaptative
- Accès aux zones éloignées, difficiles ou impratiquables
- Résultats rapides
- Pas de demandes ou permis spécifiques

Guenther et al., 2000

5 octobre 2023 B 612 **Toulouse**, France

des Hautes Études

Bathymétrie par satellite: modèle semi-analytique de transfert radiatif (ratio)

B 612

Coefficient d'absorption de l'eau pure en fonction de la longueur d'onde optique

$$Z = m_1 \frac{\ln(nDNi)}{\ln(nDNj)} - m_0$$

 DN_i = digital numbers of the wavebands *i* DN_i = digital numbers of the wavebands j m_1 = slope of the fitted linear model m_0 = intercept of the fitted linear model n = a fixed constant to ensure that the natural logarithm is positive

> Stumpf et al., 2003

Bathymétrie par satellite: modèle semi-analytique de transfert radiatif (Moorea)

Bathymétrie par satellite: modèle empirique par réseau de neurones (Saint-Malo)

Coastal - Blue - Green - Yellow - Red issue de WorldView-3

- 1 couche cachée pourvue de 5 neurones
- Profondeur atteinte: 9 m
- ≻ R²=0,94

5 octobre 2023 B 612 Toulouse, France

Collin et al., 2017

Bathymétrie par Pléiades Neo?

Quelle est la contribution de la bande *Deep blue* mais aussi de la *Red edge* à la modélisation de la bathymétrie en fonction:

- de la nature de la modélisation?
- de l'architecture du réseau neuronal?

Site d'étude

- Baie de Saint-Malo (48°40'N, 2°4'10''W; Bretagne, France)
- **0,2 m⁻¹ d'atténuation lumineuse verticale** (*Kd*): turbidité Moyenne
- Une grande diversité de profondeurs (du zéro topographique à 25 m de profondeur du chenal du fleuve de la Rance (barrage marémoteur)
- Une grande diversité d'albedos/réflectances benthiques (vase, sable, gravier, cailloutis, galet, roche, algues, herbiers, etc.)
- Régime mégatidal

Imagerie PNEO

Noms de bandes Plus basse Plus haute Iongueur d'onde longueur d'onde

Deep blue	400	450
Blue	450	520
Green	530	590
Red	620	690
Red edge	700	750
Near-infrared	770	880

- Acquisition le 7 décembre 2022 à 11h12min48sec UTC time
- Corrections géométriques (rpc): RFG93 -Lambert93 - IGN69
- Corrections radiométriques (FLAASH): réflectance à la surface de l'eau
- Masquage terre

Méthodologie Résultats Conclusions Perspectives Contexte

Lidar topobathymétrique

Leica HawkEye 3

Acquisition en mai-juin 2018 (Shom) Au moins 4 points.m⁻² 25 m de profondeur

Conversion du nuage de points WGS84 en RGF93 – Lambert 93 – **IGN69**

Rasterisation à 1,2 m (comme PNEO)

5 octobre 2023 B 612 **Toulouse**, France

des Hautes Études

Modélisation : transfert radiatif (ratios) et réseaux

1. Echantillonnage:

Stratification de 20 couches (-3,5 m à -23,5 m) au pas de 1 m, puis sélection de 90 pixels aléatoires (30 cal, 30 val, 30 test)

Modélisation semi-analytique + empirique:

- Réponse: lidar
- Prédicteurs: 1 ratio BVRIR et 9 ratios issus de PBVRReIR
- OLS 1C1N 1C3N 2C1N 2C3N

3. Modélisation empirique:

- Réponse: lidar
- Prédicteurs: combinaisons BVRIR, PBVRIR, PBVRReIR
- OLS 1C1N 1C3N 2C1N 2C3N

5 octobre 2023 B 612 Toulouse, France

de neurones

Modélisation par ratios + réseaux de neurones: semi-analytique + empirique

Meilleur ratio: 9 ratios des 6 bandes de PNEO (R²_{test}=0,75, soit 33,93% de gain) Meilleur modèle: 1 couche 3 neurones

Modélisation par réseaux de neurones: empirique

BGRIR ■ PBGRIR ■ PBGRREIR

Meilleure combinaison: 6 bandes de PNEO (R²_{test}=0,76, soit 4,11% de gain) Meilleur modèle: 1 couche 3 neurones

5 octobre 2023 B 612 **Toulouse**, France

École Pratique des Hautes Études

Modélisation spatiale

- 6 bandes issues de Pléiades Neo
- 1 couche cachée pourvue de 3 neurones
- Profondeur atteinte: 15 m
- ➢ R²=0,76 (r=0,87)

Conclusions

- L'ajout des bandes Deep blue et aussi red edge améliorent l'extraction de la bathymétrie en milieu côtier de turbidité moyenne (0,2 m⁻¹ d'attenuation)
- La modélisation semi-analytique + empirique a été améliorée de 33,93% de BVR-IR à Db-BVR-Re-IR
- La modélisation empirique a été améliorée de 4,11% de BVR-IR à Db-BVR-Re-IR
- Meilleure architecture neuronale: 1 couche cachée pourvue de 3 neurones (attention au sur-apprentisage)

5 octobre 2023 B 612 Toulouse, France

École Pratique des Hautes Études PSL 🛣 CGEL

Perspectives: topobathymétrie avec tri-stereo PNEO

Collin et al. 2018, Rem. Sen. Env

MERCI POUR VOTRE ATTENTION

Antoine Collin

Centre de GéoEcologie Littorale Ecole Pratique des Hautes Etudes PSL Université Paris

antoine.collin@ephe.psl.eu

5 octobre 2023 B 612 Toulouse, France

École Pratique des Hautes Études

CGEL

