
Spectral	  unmixing	  
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Outlines 

1.  Introduction to sub-pixel analysis 

2.  Linear mixture model 

3.  Nonlinear mixture model 

4.  Bi-linear mixture model 
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Some particularities of hyperspectral data are not to be found in other types of image data: 
•  Mixed pixels 
•  Sub-pixel targets 

Spectral mixture 
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Spectral mixture 

Mixed pixel: 
The signal detected by a sensor into a single pixel is frequently a combination of 
numerous disparate signals. 
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Spectral mixture 

If the resolution is low enough that 
disparate materials can jointly occupy a 
single pixel, the resulting spectral 
measurement will be the composite of 
the individual spectra. 

Usually one of the reason why mixed pixels exist depends on one of two reasons:  

mixed pixels can result when distinct 
materials are combined into a 
homogeneous mixture.  
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Spectral mixture 

In a hyperspectral image, each pixel, depending on the spatial resolution of  the sensor, cover a certain area of  
the ground. The detected signal is a combination of  the signals produced by the different types covered by the 
pixel   

4	   main	   different	   spectral	   signatures:	   asphalt,	   tree,	  
concrete,	  clay	  roof	  <les	  	  

1	  Detected	  
signature	  
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Linear spectral mixture 

If  the endmembers in a pixel appear in spatially segregated patterns similar to a square checkerboard, these 
systematics are basically linear. In this case the spectrum of  a mixed pixel is a linear combination of  the 
endmember spectra weighted by the fractional area coverage of  each endmember in a pixel. 

Linear mixture € 

x = aisi + w
i=1

M

∑
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Linear spectral mixture 
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If the total surface area is considered to be 
divided proportionally between the different 
materials in the within the pixel then the 
reflected radiation will convey the 
characteristics of the associated media with 
the same proportions.  
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Linear spectral mixture 

Linear mixture Vegetation (60%) 

Buildings (40%) 

Mixed pixel 
0.6*veg+0.4*build 

There exists a linear relationship 
between the fractional 
abundance of the substances 
comprising the area being 
imaged and the spectra in the 
reflected radiation. 



gipsa-‐lab	  

Non linear spectral unmixing 

If  the components of  interest in a pixel are in an intimate association, like sand grains of  different 
composition in a beach deposit, light typically interacts with more than one component as it is multiply 
scattered, and the mixing systematics between these different components are nonlinear. 

Nonlinear mixture 
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Nonlinear spectral mixture 
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Non linear spectral unmixing 

Nonlinear mixture 

Calcite Kaolinite 
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Such nonlinear effects have been recognized in spectra of: 

•  particulate mineral mixtures 
•  aerosols and atmospheric particles  
•  vegetation and canopy. 

1.9 

Nonlinear spectral mixture 
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Linear vs nonlinear mixing model 

•  Linear mixture model 

  Assumes that endmember substances are sitting side-by-side within the FOV. 

•  Nonlinear mixture model 

  Assumes that endmember components are randomly distributed throughout the FOV. 

  Multiple scattering effects. 

Linear mixture Nonlinear mixture 
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spectral unmixing  

The basic premise of  mixture modeling is that within a given scene, the surface is dominated by 
a small number of  distinct materials that have relatively constant spectral properties. 
These distinct substances (e.g., water, grass, mineral types) are called endmembers, and the 
fractions in which they appear in a mixed pixel are called fractional abundances. 

•  The goal is to find the endmembers that can be used to “unmix” other mixed pixels 

•  A crucial issue is how to find spectral endmembers. 
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spectral unmixing scheme  
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Dimensionality reduction 
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A	  dataset	  composed	  of	  hundreds	  of	  high	  correlated	  narrowband	  channels	  may	  cause	  problems	  in	  the:	  

• processing	  phase	  (complexity)	  

• inversion	  phase	  (Hughes	  phenomenon).	  

dimensionality	  reduc<on	  may	  become	  a	  key	  parameter	  to	  obtain	  a	  good	  performance	  

Dimensionality reduction 
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Dimensionality reduction 

The dimensionality reduction pre-processing is extremely useful to enhance the
 computing performances. It depends on the intrinsic information retained by the HSI
 and can strongly influence the result of the unmixing process. 

• Determination of intrinsic dimensionality (ID) for remotely sensed imagery is a very
 challenging problem. ID is defined as the minimum number of parameters required
 to account for the observed properties of the data. The true dimensionality of
 multivariate data is difficult to determine in practice due to the unknown ground
 truth. 

• Virtual Dimensionality (VD) is defined as the minimum number of spectrally
 distinctive signal sources. It can be used as the reference for the number of
 endmembers. In general, VD is much larger than ID. 
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Intrinsic dimension  

Any low-dimensional data space can trivially be turned into a higher dimensional 
space by adding redundant or randomized dimensions, from this assumption many 
high-dimensional data sets can be reduced to lower dimensional data without 
significant information loss. 

Hughes demonstrated that having a fixed number of training samples, the ability of 
a classification algorithm to correctly predict the effective result, decreases as the 
input dimension increase. 

Hughes, G.F., 1968. "On the mean accuracy of statistical pattern recognizers", IEEE Transactions on Information Theory, 
IT-14:55-63. 

Reduction of the 
input dimension 

Increase of the 
training samples 

Dimensionality reduction – Hughes effect 
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Feature	  reduc<on,	  or	  dimensionality	   reduc<on,	   is	   the	  process	  of	   reducing	  the	  number	  of	   features	  of	  
the	  considered	  data.	  

Dimensionality	  reduc<on	  can	  be	  divided	  into:	  

• “feature	  selec/on”	  algorithms:	  Selec<on	  of	  a	  sub-‐op<mal	  subset	  of	  the	  original	  set	  of	  features	  

• “feature	   extrac/on”	   algorithms:	   Projec<on	   of	   the	   original	   feature	   space	   into	   a	   lower	   dimensional	  
subspace	  that	  preserves	  most	  of	  the	  informa<on	  

Feature selection/extraction 
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Feature selection algorithms perform a search through the space of feature subsets, and, as a 
consequence, must address four basic issues affecting the nature of the search: 

1.  Starting point. Selecting a point in the feature subset space from which to begin the 
search can affect the direction of the search. One option is to begin with no features and 
successively add attributes. In this case, the search is said to proceed forward through the 
search space. Conversely, the search can begin with all features and successively remove 
them. In this case, the search proceeds backward through the search space. Another 
alternative is to begin somewhere in the middle and move outwards from this point. 

2.  Search organization. An exhaustive search of the feature subspace is prohibitive for all 
but a small number of features. With N initial features there exist 2^N possible subsets. 

3.  Evaluation strategy. A criterion to estimate the final accuracy of the feature subsets. 

4.  Stopping criterion. A feature selector must decide when to stop searching through the 
space of feature subsets. Depending on the evaluation strategy, a feature selector might 
stop adding or removing features when none of the alternatives improves upon the merit of 
a current feature subset. Alternatively, the algorithm might continue to revise the feature 
subset as long as the merit does not degrade.  

Feature selection 
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Non-‐parametric	  approach	  for	  relevant	  informa<on	  extrac<on	  from	  a	  redundant+noisy	  data	  

Eliminate	  the	  redundance	  by	  means	  of	  autocorrela<on	  

Geometrically	  speacking,	  PCA	  change	  the	  reference	  system	  to	  enhance	  the	  data	  structure	  

PCs	  have	  the	  following	  proper<es:	  

• Are	   linear	   combina<ons	   of	   the	   original	  
variables	  

• Are	  mutually	  not	  correlated	  

PCA 
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MNF	   is	   a	   linear	   transforma<on	   that	   consists	   of	   two	   separate	  PCA	   rota<ons	   and	  a	  noise	  
whitening	  step:	  	  

• Use	  the	  noise	  covariance	  matrix	  to	  decorrelate	  and	  rescale	  the	  noise	   in	  the	  data	  (noise	  
whitening).	  This	  results	   in	  transformed	  data	   in	  which	  the	  noise	  has	  unit	  variance	  and	  no	  
band-‐to-‐band	  correla<ons.	  	  

• Perform	  a	  standard	  Principal	  Components	  transforma<on	  of	  the	  noise-‐whitened	  data.	  

The	  MNF	  transform,	  like	  the	  PCA	  transform,	  is	  an	  eigenvector	  procedure,	  but	  based	  on	  the	  
covariance	  structure	  of	  the	  noise	  in	  the	  image	  data	  set.	  	  

Goal	  of	  the	  MNF	  transform	  is	  to	  select	  component	  in	  a	  way	  that	  maximizes	  the	  signal-‐to-‐
noise	  ra<o	  (rather	  than	  the	  informa<on	  content).	  	  

MNF 



gipsa-‐lab	  

Independent	  Component	  analysis	  

ICA is a quite powerful technique to separate a multivariate signal into additive 
subcomponents supposing the mutual statistical independence of the non-
Gaussian source signals. 

The goal is to find a linear representation of non-gaussian data so that the 
components are statistically independent, or as independent as possible.  

Such a representation seems to capture the essential structure of the data in many 
applications, including feature extraction and signal separation. 

€ 

x j = a j1s1 + a j 2s2 + ...+ a jnsn
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Independent	  Component	  analysis	  –	  The	  cocktail	  party	  problem	  

Imagine to be in a room where two people are speaking simultaneously. You have 
two microphones, which you hold in different locations. The microphones give you 
two recorded time signals, which we could denote by x1(t)  and x2(t), with x1  and 
x2  the amplitudes, and t the time index. Each of these recorded signals is a 
weighted sum of the speech signals emitted by the two speakers, which we denote 
by s1(t)  and s2(t) . We could express this as a linear equation: 

€ 

x1(t) = a11s1 + a12s2
x2(t) = a21s1 + a22s2

It would be very useful if you could now estimate the two original speech signals s1(t)  
and s2(t) , using only the recorded signals x1(t)  and x2(t). 

If we knew the parameters a, we could solve the linear equation by classical methods. 
If you don’t know the a, the problem is considerably more difficult. 
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Independent	  Component	  analysis	  –	  The	  cocktail	  party	  problem	  

x1(t)  

x2(t) 

s2 

s1 
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Independent	  Component	  analysis	  

 We can use some information on the statistical properties of the signals s(t)  to 
estimate the a. To do this it is enough to assume that s1(t) and s2(t) , at each time 
instant t, are statistically independent. 

 ICA algorithms return signals that are very close to the original source signals 
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Nonlinear	  Principal	  Components	  Analysis	  

Nonlinear generalization of the standard PCA, performed by Autoassociative Neural 
Networks (AANN) 

Multi-layer neural networks (NN) of a conventional type, featuring feed-forward 
connections and sigmoidal nodal transfer functions, trained by back-propagation or 
similar algorithms. 
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Endmember extraction 
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Endmember extraction 
Endmember extraction algorithms: simultaneous versus sequential 

Different approaches depending on the actual implementation: 

 Simultaneous algorithms: they assume that the number of  endmembers p is known 
a priori. For each value of  p, they recalculate all the endmembers (they do not take 
advantage of  previously calculated p-1 endmembers). Example: N-FINDR. 

Sequential algorithms: they produce a set of  endmembers in sequential order, i.e.,  if  we 
are searching for p endmembers, a subset of  previously calculated p-1 endmembers 
would always be in the final set. Examples: PPI, OSP, VCA. 

N-FINDR algorithm 

Pixel Purity Index (PPI) 
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Pixel Purity Index (PPI) 

•  Parameters: k (number of  skewers) and t (cut-off  threshold) 

•  It is not an iterative algorithm (no convergence criteria) 

•  No estimation of  number of  endmembers a priori 

•  Manual intervention required to select a final set of  endmembers 

ENVI’s N-Dimensional visualization tool 
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Pixel Purity Index (PPI) 

Extreme 
pixel 

Extreme 
pixel 

Extreme 
pixel 
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Pixel Purity Index (PPI) - Works by projecting each pixel onto one vector from a set 
of random vectors spanning the reflectance space. A pixel receives a score when it 
represent an extremum of all the projections. Pixels with the highest scores are 
deemed to be spectrally pure. 
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Pixel Purity Index (PPI) 

Demo will be performed using ITTVIS Envi 4.5 (http://www.ittvis.com) 
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Orthogonal Subspace Projection  
Spectral-based method developed by Harsanyi and Chang (IEEE-TGRS 1994): 

1.  Select the brightest pixel from the scene as the initial one 

2.  Apply an orthogonal subspace projection operator to all the pixels in the original 
image to identify the most orthogonal pixel to the first one (second endmember) 

3.  Apply the orthogonal subspace projector again to all pixels, looking for the most 
orthogonal one with regards to the first two (third endmember) 

4.  Repeat the process until a predetermined number of  endmembers is found 
.  

Orthogonal subspace projector: 

where I is the identity matrix 
and U is a matrix in which the 

newly extracted pixels 
(endmembers) are incorporated 
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N-FINDR 
Spectral-based method developed by Winter (Proceedings of  SPIE, 2003): 

1.  Dimensional reduction using MNF (ordering resulting components in terms of  
signal to noise ratio) or PCA (ordering components in terms of  variance) 
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N-FINDR 
Spectral-based method developed by Winter (Proceedings of  SPIE, 2003): 

1.  Dimensional reduction using MNF (ordering resulting components in terms of  
signal to noise ratio) or PCA (ordering components in terms of  variance) 

2.  Random initial selection of  endmembers according to a predetermined number 

3.  Test each pixel in each endmember position and retain combinations with highest volume 
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Endmember extraction 



gipsa-‐lab	  

Outlines 

1.  Introduction to sub-pixel analysis 

2.  Linear mixture model 

3.  Nonlinear mixture model 

4.  Bi-linear mixture model 
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x = aisi + w
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Linear spectral unmixing (LSU) 

Known terms 

To be extimated 

The goal is to find extreme pixel vectors 
(endmembers) that can be used to “unmix” other 
mixed pixels in the data using a linear mixture 
model. 
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Abundance estimation 

Unconstrained least squares linear unmixing 

Non-negativity constrained least squares linear unmixing 

Fully constrained least squares linear unmixing 

Weighted least squares for linear unmixing 
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Unconstrained abundance estimation 

•  When all the endmember information (i.e., the number of endmembers and their
 spectral signatures) are known, abundances can be estimated via the least
 squares solution. 

•  If the two abundance constraints are ignored, abundance estimation is to find α   
 such that the pixel reconstruction error: 

 is minimized. The least squares (LS) solution is:   
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Non-negative constrained abundance estimation 

•  If the abundance non-negativity constraint needs to be relaxed, the problem of
 abundance estimation becomes a constrained optimization problem:  

•  This optimization problem with inequality constraints can be solved by quadratic
 programming since the objective function is a quadratic function.   
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Fully constrained abundance estimation 

•  If both abundance non-negativity and sum-to-one constraints need to be relaxed,
 the constrained optimization problem becomes: 

•  Actually, the sum-to-one constraint can be easily satisfied by adding a row vector
 with all elements being one to the endmember matrix M, adding an element one
 to the pixel vector r, and solving the resulting least squares problem. 



gipsa-‐lab	  

Aviris Lunar Lake experiment 

•  Five endmembers: Cinder (C), Playa lake (P), Rhyolite (R), Vegetation (V), Shade (S) 

•  Six endmembers: Cinder (C), Playa lake (P), Rhyolite (R), Vegetation (V), Shade (S),  

                                Anomaly (A) 

R 

C V 

S 

P 

A 

Pixel reconstruction error =  
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Aviris Lunar Lake experiment 

Abundance maps from unconstrained least squares (UCLS) linear unmixing  
with five endmember (pixel reconstruction error = 8.85×103) 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  
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Aviris Lunar Lake experiment 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  

Abundance maps from non-negativity constrained least squares (NCLS) linear 
unmixing with five endmember (pixel reconstruction error = 1.02×104) 
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Aviris Lunar Lake experiment 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  

Abundance maps from fully constrained least squares (FCLS) linear unmixing  
with five endmember (pixel reconstruction error = 1.43×104) 
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Aviris Lunar Lake experiment 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  Anomaly	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  

Abundance maps from unconstrained least squares (UCLS) linear unmixing  
with six endmember (pixel reconstruction error = 8.64×103) 
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Aviris Lunar Lake experiment 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  Anomaly	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  

Abundance maps from non-negativity constrained least squares (NCLS) linear 
unmixing with six endmember (pixel reconstruction error = 9.56×103) 
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Aviris Lunar Lake experiment 

Abundance maps from fully constrained least squares (FCLS) linear unmixing  
with six endmembers (pixel reconstruction error = 1.35×104) 

	  	  	  	  	  	  	  	  	  	  	  	  Cinder	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Playa	  lake	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Rhyolite	  	  

	  	  	  	  	  	  	  	  	  	  Anomaly	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Shade	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Vegeta<on	  	  
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Aviris Lunar Lake experiment 

•  Pixel reconstruction error is decreased when using more 
endmembers. 

•  Pixel reconstruction error is increased when imposing more 
constraints. 

•  Comparison in terms of pixel reconstruction error should be made 
for comparable cases. 

•  Evaluation is more reasonable in terms of abundance accuracy. 
However, it is difficult due to the unavailability of ground truth in 
practice.  

UCLS NCLS FCLS 

Five endmembers 8.85×103 1.02×104 1.43×104 

Six endmembers 8.64×103 9.56×103 1.35×104 

Pixel Reconstruction Errors�
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Weighted Least Square 

•  When only partial endmember information is known, abundances can be
 estimated via the weighted least squares (WLS) solution. For instance, we may
 know the foreground endmembers only, but the information of background
 endmembers is more difficult to be determined.   

•  The WLS solution for the abundances of the known endmembers can be
 estimated as: 

 where Σ is background covariance matrix. 
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Weighted Least Square 
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Abundance maps from weighted least squares (WLS) linear unmixing  when 
only five panel signatures are known 
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Abundance maps from UCLS linear unmixing when only five panel signatures 
are known 
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Weighted Least Square 

five	  known	  endmembers:	  	  
alunite	  (A),	  buddingtonite	  (B),	  calcite	  (C),	  kaolinite	  (K),	  muscovite	  (M)	  

A

B 
M 

K 
C 
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Weighted Least Square 

Abundance maps from weighted least squares (WLS) linear unmixing when 
only five mineral signatures are known 

	  	  	  	  	  alunite	  (A)	  	  	  	  	  	  	  	  buddingtonite	  (B)	  	  	  	  	  	  	  	  	  calcite	  (C)	  	  	  	  	  	  	  	  	  	  	  	  	  kaolinite	  (K)	  	  	  	  	  	  	  muscovite	  (M)	  

	  	  	  	  	  alunite	  (A)	  	  	  	  	  	  	  	  	  	  buddingtonite	  (B)	  	  	  	  	  	  	  	  	  calcite	  (C)	  	  	  	  	  	  	  	  	  	  	  	  kaolinite	  (K)	  	  	  	  	  	  	  	  muscovite	  (M)	  

Abundance maps from UCLS linear unmixing when only five mineral signatures 
are known 
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remarks 

•  Whether abundance constraints should be imposed or not depends on
 practical application. It has been argued that if  the model is accurate (i.e.,
 the number of  endmembers and their signatures), the two constraints
 should be satisfied automatically. 

•  The non-negativity constraint is more important than the sum-to-one
 constraint. Due to noise and spectral variability, reinforcing the sum-to
-one constraint may be prone to induce additional estimation error. 

•  The discussed abundance estimation methods are based on minimum pixel
 reconstruction error (L2). Abundance estimation is also doable if  the error
 is redefined (L1 error, spectral angle error, etc.), which results in a more
 complicated constrained optimization problem. 

•  When endmembers are unknown, endmember signatures should be
 extracted or estimated first. Some endmember extraction algorithms can
 provide abundance estimates simultaneously. 
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remarks 

•  There exists another group of  abundance estimation based on blind source
 separation, which does not require endmember signatures to be known a
 prior. Widely used matrix factorization-based blind source separation
 methods include 

•  Independent component analysis (ICA) 

•  Nonnegative matrix factorization (NMF) 

These methods are more frequently used for unsupervised (soft) classification. 
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Outlines 

1.  Introduction to sub-pixel analysis 

2.  Linear mixture model 

3.  Nonlinear mixture model 

4.  Bi-linear mixture model 
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Nonlinear spectral unmixing 

Linear versus nonlinear unmixing revisited 

Neural network-based spectral unmixing 

Architectures and training algorithms 

Experiments using laboratory data 
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Linear vs nonlinear mixing 

Linear or nonlinear? 

Linear approach is useful, but valid for few 
cases 

Nonlinear approaches are very difficult to 
be implemented 

The effects of  nonlinear mixing on 
reflectance spectra can be quite dramatic 



gipsa-‐lab	  

Linear vs nonlinear mixing 

50%-50% 
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Linear vs nonlinear mixing 

Data cloud 
shifted to low 
albedo area 
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Linear vs nonlinear mixing 

False 
endmembers!! 

E 
F 

G 
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Linear vs nonlinear mixing 



gipsa-‐lab	  

Standard NN based unmixing  

Dimensionality reduction 

Training 
Samples 

Test 
Samples 

Artificial Neural 
Network Classifier 

Test classification accuracy 

PCA, MNF, DWT, ICA,… 

Randomly selected 

•  Incorporates a learning process based on known, randomly selected training samples. 
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Standard NN based unmixing  

•  Back-propagation learning from selected training samples. 

•  The training stage is the most crucial: how many training samples are required?. 

t training patterns E endmembers 

Hidden layer 

l1 t 1 

2 

N 

1 

2 

E 

1 

M 

1 a 

M M 

M 

M 

Input layer Output layer 

l2 t 

lN t 

2 a 

E a 
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Standard NN based unmixing  
Combined linear/nonlinear architecture #1 
•  Nonlinear refinement of  linear abundance estimations (using FCLSU). 

•  Limitation: this approach does not take into account the full spectral information. 

Intelligent training sample 
selection algorithm 

Identification of  the most 
effective training samples 

Multi-layer neural network  
(p input and p output neurons) 

Training 

p-dimensional 
abundance  

data set 

Initial 
condition 

Nonlinear 
refinement 

n-dimensional 
spectral  
data set 

Estimation of  number 
of  endmembers, p 

Automatic endmember 
extraction algorithm 

Fully constrained linear 
spectral unmixing 

p endmembers 
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Standard NN based unmixing  
Combined linear/nonlinear architecture #2 
•  MLP initially trained using only p endmembers provided by an automatic algorithm. 

•  Nonlinear refinement from a linear initial weight condition using training samples. 

•  The full spectral information is used throughout the process. 

  Choice of  endmember finding algorithms for initialization (AMEE used in this work). 

  Choice of  intelligent training sample selection algorithms 

n-dimensional 
spectral  
data set 

Automatic endmember 
extraction algorithm 

p fractional 
abundance 

planes 

p endmembers 

Multi-layer neural network  
(n input and p output neurons) 

Initial condition 

Intelligent training sample 
selection algorithm 

Identification of  
the most effective 
training samples 

Nonlinear  refinement 
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Standard NN based unmixing  
Training of  neural network architecture 
•  Need for algorithms able to automatically search for the most useful training samples. 

•  Potential to direct ground-truth data collection to the most useful training sites. 

  In the linear mixture model, the most highly pure patterns are of  interest. 

  In the nonlinear mixture model, “border” training patterns are required. 
Extreme 

Core 

Border 

Band a 

B
an

d 
b 

Band a 

B
an

d 
b 
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Border-training Selection Alg. (BTA) 

Parallel automatic endmember 
extraction algorithm 

p endmembers 

1. Partition the input data using spatial-domain decomposition 

2. Process independently at each local partition: 

   2.1. Spectral screening to associate each signature ti to pure class ej (p classes) 

   2.2. For each signature, compute the Mahalanobis distance from each pure class as: 

MD(ti , ej)=(ti , µj)T Ki
-1 (ti , µj) 

   2.3. Compute “borderness” for ti as difference between the two smallest values of  MD(ti , ej) 

3. Gather results and select a set of  samples in decreasing order according to their borderness score 

Standard NN based unmixing  
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Mixed-signature Selection Alg. (MSA) 

Parallel automatic endmember 
extraction algorithm 

Standard NN based unmixing  

p endmembers 

1. Partition the input data using spatial-domain decomposition 

2. Compute the centroid using                        and broadcast it to workers 

3. Process independently at each local partition: 

    3.1. Calculate eccentricity of  each signature ti as SAD(ti , cp) an retain the one with lowest score 

    3.2. Calculate eccentricity of  each endmeber ei as SAD(ei, cp) and remove the one with lowest score 

    3.3. Calculate                             and iterate from 3.1 until a set of  training samples is obtained 

3. Gather results and select the most highly mixed signatures by comparing with cp 
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Mustard’s database with known proportions 
•  Database of  26 pure and mixed (binary & ternary) spectra. 

  Collected using RELAB, a bidirectional spectrometer. 

  211 spectral bands in the range 0.4 – 2.5 µm. 

  Ground-truth information about fractional abundances is available for each spectra. 
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Mustard’s database with known proportions 

Pure signatures 

Binary mixtures 

Ternary mixtures 
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Outlines 

1.  Introduction to sub-pixel analysis 

2.  Linear mixture model 

3.  Nonlinear mixture model 

4.  Bi-linear mixture model 
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bilinear models are defined by spectral components appearing in the widely used 
LMM but also by bilinear terms corresponding to possible interactions between the 
different materials of the scene. 

Bi-linear spectral unmixing  

€ 

x = aisi + w
i=1

M

∑

€ 

x = arsr + βi, jmi • m j + w
j= i+1

R

∑
i=1

R −1

∑
r=1

R

∑

€ 

mi • m j =

m1,im1, j
.
.
.

mL ,imL, j

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

product of the ith and jth spectra 

amplitude of the interaction term due to the 
ith and jth components 



gipsa-‐lab	  

bilinear models are defined by spectral components appearing in the widely used 
LMM but also by bilinear terms corresponding to possible interactions between the 
different materials of the scene. 
Nascimento model: 

Bi-linear spectral unmixing  
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By considering the interaction mi*mj  as a new spectral component having fractions 
βi,j the formula can be rewritten as: 

Bi-linear spectral unmixing  

€ 

x = ap
*mp

* + w
p=1

R*

∑

€ 

ap
* = ar   ,  mp

* = mr              p =1,...,R
βi, j ≥ 0

ap
* = βi, j  ,  mp

* = mi • m j      R +1≤ p ≤ R*

Where: 
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Fan’s model: 

Bi-linear spectral unmixing  

€ 

x = arsr + aia jmi • m j + w
j= i+1

R

∑
i=1

R −1

∑
r=1

R

∑

The Fan’s model assumes that the amplitudes of the interactions depends on the 
component fractions involved in the mixture. 
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Generalized model: 

Bi-linear spectral unmixing  

€ 

x = arsr + γ i, jaia jmi • m j + w
j= i+1

R

∑
i=1

R −1

∑
r=1

R

∑

quantifies the interactions terms between the different spectral components. 

The generalized model assumes that the contribution of the interaction term 
mi*mj  is proportional to the fractions of the involved components with an 
amplitude λi,jaiaj 

Generalized method is more flexible 
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Summary 

•  VD estimation 

–  To estimate the number of  endmembers to be extracted  

•  Dimensionality reduction (optional) 

–  To improve the performance of  endmember extraction 

•  Endmember extraction   

  –  To determine endmember signatures, which may or may not be image pixels 

•  Endmember selection (optional) 

–  To optimize the endmember set that is actually used for unmixing 

•  Abundance estimation (linear or nonlinear) 

–  To estimate endmember abundance, where linear and nonlinear unmixing may
 be integrated. 


