Part 1 - Inverse Problems in Hyperspectral Imaging

José M. Bioucas Dias

Instituto de Telecomunicações
Instituto Superior Técnico
Universidade de Lisboa
Portugal

Société Française de Photogrammétrie et Télédétection
Grenoble, France, May, 2016
Outline

Part 1 - Brief overview of hyperspectral imaging in remote sensing
- The observation model (direct or forward problem)
- Degradation mechanisms (spatial blur and noise)
- Characterization of hyperspectral images (geometrical and statistical)
- Inverse problems in hyperspectral imaging (denoising, sharpening, unmixing)

Part 2 - Inverse problems in a nutshell

Part 3 - Denoising, sharpening, and unmixing
Measuring the radiation arriving the sensor with high spectral resolution over a sufficiently broad spectral band such that the acquired spectrum can be used to uniquely characterize and identify any given material.
Hyperspectral imaging: motivation

Landsat 7 TM bands

200 bands 10 mm
Remote sensing: basics

Radiance versus reflectance

\[L(\lambda) = \frac{1}{\pi} E(\lambda) \rho(\lambda) \]

- \(E \) – Irradiance (W/m\(^2\))
- \(\rho \) – Reflectance
- \(L \) – Radiance (W/Sr/m\(^2\))
- \(\lambda \) – Wavelength (\(\mu\)m)
Remote sensing: the influence of atmosphere

Atmospheric molecules responsible for absorption [Lillesand & Keifer, 02]

(Energy blocked)

Photography

Hyperspectral scanners

Thermal scanners

Multispectral scanners

UV VI N-IR MID-IR TERMAL-IR MIC

0.3μm 0.7μm 1μm 2.5μm 10μm 1mm
Spatial and spectral resolution trade-offs

The signal-to-ratio (SNR) associated with the Poissonian noise in a hyperspectral imaging system is given by ([Shaw & Burke 2003])

$$\text{SNR} \propto \frac{\Delta^2}{\text{ACR} \times R}$$

where Δ is the spatial resolution, R is the number of bands, and ACR is the area coverage rate.

For the same SNR and ACR, we have

$$\frac{\Delta(R)}{\Delta(1)} = \sqrt{R}$$

In conclusion: Hyperspectral images tend to have low spatial resolution.
Acquisition instruments

Remote sensing

<table>
<thead>
<tr>
<th></th>
<th>HYDICE</th>
<th>AVIRIS</th>
<th>HYPERION</th>
<th>EnMAP</th>
<th>PRISMA</th>
<th>CHRIS</th>
<th>HyspIRI</th>
<th>IASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (Km)</td>
<td>1.6</td>
<td>20</td>
<td>705</td>
<td>653</td>
<td>614</td>
<td>556</td>
<td>626</td>
<td>817</td>
</tr>
</tbody>
</table>
| Spatial resolution (m) | 0.75 | 20 | 30 | 30 | 5-30 | 36 | 60 | V: 1-2 km
H: 25 km |
| Spectral resolution (nm) | 7-14 | 10 | 10 | 6.5-10 | 10 | 1.3-12 | 4-12 | 0.5 cm⁻¹ |
| Coverage (μm) | 0.4-2.5 | 0.4-2.5 | 0.4-2.5 | 0.4-2.5 | 0.4-2.5 | 0.4-1.0 | 0.38-2.5 | 3.62-15.5 (645-2760 cm⁻¹) |
| Number of bands | 210 | 224 | 220 | 228 | 238 | 63 | 217 | 8461 |
| Data cube size | 200x320 x 210 | 512x614 X 224 | 660x256 x 220 | 1000x1000 x 228 | 400x880 X 238 | 748x748 X 63 | 620x512 X 210 | 765x120 X 8461 |
Acquisition instruments

Remote sensing

Low spatial resolution

<table>
<thead>
<tr>
<th>Instrument</th>
<th>HYDICE</th>
<th>AVIRIS</th>
<th>HYPERION</th>
<th>EnMAP</th>
<th>PRISMA</th>
<th>CHRIS</th>
<th>HyspIRI</th>
<th>IASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (Km)</td>
<td>1.6</td>
<td>20</td>
<td>705</td>
<td>663</td>
<td>614</td>
<td>556</td>
<td>626</td>
<td>817</td>
</tr>
<tr>
<td>Spatial resolution (m)</td>
<td>0.75</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>5-30</td>
<td>36</td>
<td>60</td>
<td>V: 1-2 km H: 25 km</td>
</tr>
<tr>
<td>Spectral resolution (nm)</td>
<td>7-14</td>
<td>10</td>
<td>10</td>
<td>6.5-10</td>
<td>10</td>
<td>1.3-12</td>
<td>4-12</td>
<td>0.5 cm⁻¹</td>
</tr>
<tr>
<td>Coverage (µm)</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-1.0</td>
<td>0.38-2.5 & 7.5-12</td>
<td>3.62-15.5 (64-2760 cm⁻¹)</td>
</tr>
<tr>
<td>Number of bands</td>
<td>210</td>
<td>224</td>
<td>220</td>
<td>228</td>
<td>238</td>
<td>63</td>
<td>217</td>
<td>8461</td>
</tr>
<tr>
<td>Data cube size (samples x lines x bands)</td>
<td>200x320 X210</td>
<td>512x614 X224</td>
<td>660x256 X220</td>
<td>1000x1000 X228</td>
<td>400x880 X238</td>
<td>748x748 X63</td>
<td>620x512 X210</td>
<td>765x120 X8461</td>
</tr>
</tbody>
</table>
Remote sensing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (Km)</td>
<td>1.6</td>
<td>20</td>
<td>705</td>
<td>613</td>
<td>614</td>
<td>556</td>
<td>626</td>
<td>817</td>
</tr>
<tr>
<td>Spatial resolution (m)</td>
<td>0.75</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>5-30</td>
<td>36</td>
<td>60</td>
<td>V: 1-2 km H: 25 km</td>
</tr>
<tr>
<td>Spectral resolution (nm)</td>
<td>7-14</td>
<td>10</td>
<td>10</td>
<td>6.5-10</td>
<td>10</td>
<td>1.3-12</td>
<td>4-12</td>
<td>0.5 cm⁻¹</td>
</tr>
<tr>
<td>Coverage (μm)</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-2.5</td>
<td>0.4-1.0</td>
<td>0.38-2.5 & 7.5-12</td>
<td>3.62-15.5 (645-2760 cm⁻¹)</td>
</tr>
<tr>
<td>Number of bands</td>
<td>210</td>
<td>224</td>
<td>220</td>
<td>228</td>
<td>238</td>
<td>63</td>
<td>217</td>
<td>8461</td>
</tr>
<tr>
<td>Data cube size (samples x lines x bands)</td>
<td>200x320 X210</td>
<td>512x614 X224</td>
<td>660x256 X220</td>
<td>1000x1000 X228</td>
<td>400x880 X238</td>
<td>748x748 X63</td>
<td>620x512 X210</td>
<td>765x120 X8461</td>
</tr>
</tbody>
</table>

Low spatial resolution

Large data volumes

Large data volumes
Contributions to the radiance measured by the sensor

\[L(\lambda) = a(\lambda)\rho(\lambda) + b(\lambda) \]

\(a\) and \(b\) are complex functions of: viewing angles, sun irradiance, atmosphere transmittance and reflectance, and surface reflectance.
Processing flow of hyperspectral data cubes

- Radiance data cube
 - Atmospheric correction
- Reflectance data cube
 - Dimensionality reduction (optional)
- Reduced data cube

Inverse problems (this tutorial)

- Denoising
- Data fusion
- Unmixing
Observation model in RS hyperspectral imaging

\(X \in \mathbb{R}^{R \times N} \) denotes a hyperspectral reflectance image organized in a matrix with \(R \) spectral bands and \(N \) pixels per band.

\[
X = \begin{bmatrix} x^1 \\ \vdots \\ x^R \end{bmatrix} (R \text{ band images})
\]

\[
X = [x_1, \ldots, x_N] (N \text{ spectral vectors})
\]

\[
x = \text{vec}(X) := [x_1^T, \ldots, x_N^T]^T \in \mathbb{R}^n, n = RN
\]

Linear observation model with additive noise

\[
y = Ax + n
\]

where \(y, n \in \mathbb{R}^m \), \(n \) is an additive perturbation, and the matrix \(A \in \mathbb{R}^{m \times n} \) accounts for the spectral and spatial sensor blurring and downsampling mechanisms.
Linear observation model

Often the action of A is separable with respect to the columns and rows of X:

$$y = Ax + n \iff Y = A_\lambda XA_x + N$$

where

- $Y, N \in \mathbb{R}^{L \times M}$ and $y = \text{vec}(Y)$
- $A = A_T \otimes A_\lambda$ (\otimes denotes kronecker product)
- $A_\lambda \in \mathbb{R}^{L \times R}$ acts on the rows (spectral domain) of X
- $A_x \in \mathbb{R}^{N \times M}$ acts on the columns (spatial domain) of X

Unknowns: $n = RN$

Observations: $m = LM$
Degradation mechanisms: noise

The noise is dominated by two components: \(y = \mathcal{P}(Ax) + n \)

1. **Non-additive Poissonian** noise due to the photon counting process (\(\mathcal{P}(Ax) \))
 - Recall: \(y \sim \mathcal{P}(x) \)
 - \(P(y = k) = \frac{e^{-x}x^k}{k!} \), \(\mathbb{E}[y] = x \), \(\mathbb{V}[y] = x \), \(\text{SNR} = \frac{\mathbb{E}^2[y]}{\mathbb{V}[y]} = x \)

2. **Additive Gaussian** noise due to electronic circuits (\(n \))
 - Accurate statistical modeling of the noise having into account the Gaussian and the Poissonian components is a challenging task ([B-D & Nascimento, 08], [Acito et al., 11], [Jezierska, 14], [Chouzenoux et al., 15])
 - Atmospheric correction process introduces further complications

In this tutorial, we often assume that the noise is Gaussian additive pixelwise independent with band-dependent variance
Example of Gaussian and Poissonian noise (ROSIS, band 60)

Gaussian Noise:
\[y = x + n, \sigma = 0.03 \]

Poissonian Noise:
\[y = \mathcal{P}(\gamma x), \gamma = 100 \]

Anscombe transform:
\[\sqrt{y + a} \approx \sqrt{\gamma x + a + w} \]
Example: noise estimation

HySime: dim = 20
([B-D, & Nascimento, 08])
Characterization of the hyperspectral images

Hyperspectral data cubes are highly correlated in the spectral-spatial domain

⇒ Live in low (or in the union of low) dimensional manifolds or subspaces ([B-D & Nascimento, 08], [B-D et al. 12], [Ma et al., 14], [Heylen et al. 14])

\[X = EZ, \quad E \in \mathbb{R}^{R \times p}, \quad p \ll R \]

⇒ Sparsely represented by 3D wavelets (multiresolution representations) ([Rasti et al., 12], [Fowler & Rucker, 07])

\[w = Wx \in \mathbb{R}^d \quad \text{(wavelet coefficients)} \quad \|w\|_0 \ll d \quad \text{(}\|w\|_0 = \{ |w_i : w_i \neq 0| \}) \]

⇒ Exhibit self-similarity, thus suited to non-local dictionary based techniques ([Castrodad et al., 11], [Elad et al., 06])

\[\text{Patch}(X) = D\alpha, \quad \alpha \text{ is parse} \]
Example of subspace identification [B-D & Nascimento, 08]

Pavia University (ROSIS, \(R = 103, N = 610 \times 340\))

\[
\text{SNR}_{i} = \frac{e_i^T R_n e_i}{e_i^T R_e e_i}
\]

SNR = 3 dB

dimension of the signal subspace = 10
Example of 3D wavelet decomposition

Pavia University
(ROSIS, $R = 103$, $N = 610 \times 340$)

Reconstruction from 3% of the 3D wavelet coefficients
PSNR = 35 dB
PSNR = 32 dB (1%)

Coefficients of the dual-tree 3D complex wavelets [Kingsbury, 02]
Inverse problems in hyperspectral imaging

Denoising

Observation model: \(Y = X + N \)
- \(X, N \in \mathbb{R}^{R \times N} \)
- \(N \) is Gaussian with matrix normal distribution: \(N \sim \mathcal{MN}(0_{R \times N}, C_\lambda, C_x) \) (this is equivalent to say that \(\text{vec}(N) \sim \mathcal{N}(0_{RN}, C_x \otimes C_\lambda) \))

Objective: estimate \(X \)

Unmixing (linear mixing model - LMM)

Observation model: \(Y = ES + N \)
- \(E \in \mathbb{R}^{p \times N} \) (endmember matrix)
- \(S \in \mathbb{R}^{p \times N} \) (abundance matrix)
- \(N \sim \mathcal{MN}(0_{R \times N}, C_\lambda, C_x) \)

Objective: estimate \(E, S \)
Matrix normal distribution

Let \(X \in \mathbb{R}^{R \times N} \). A matrix normal distribution

\[
 X \sim \mathcal{M}\mathcal{N}(M, C_\lambda, C_x)
\]

is a generalization of the multivariate normal distribution if and only if

\[
 \text{vec}(X) \sim \mathcal{N}(\text{vec}(M), C_x \otimes C_\lambda)
\]

This implies that

\[
 p(X|M, C_\lambda, C_x) = \frac{\exp \left(\frac{1}{2} \text{tr} \left[C_x^{-1} (X - M)^T C_\lambda^{-1} (X - M) \right] \right)}{(2\pi)^{RN}|C_\lambda|^{R/2}|C_x|^{N/2}}
\]

- \(M := E[X] \)
- \(C_\lambda \) - among-row covariance
- \(C_x \) - among-column covariance
Inverse problems in hyperspectral imaging

Denoising

Observation model: \(Y = X + N \)

- \(X, N \in \mathbb{R}^{R \times N} \)
- \(N \) is Gaussian with matrix normal distribution: \(N \sim \mathcal{MN}(0_{R \times N}, C_\lambda, C_x) \) (this is equivalent to say that \(\text{vec}(N) \sim \mathcal{N}(0_{RN}, C_x \otimes C_\lambda) \))

Objective: estimate \(X \)

Unmixing (linear mixing model - LMM)

Observation model: \(Y = ES + N \)

- \(E \in \mathbb{R}^{p \times N} \) (endmember matrix)
- \(S \in \mathbb{R}^{p \times N} \) (abundance matrix)
- \(N \sim \mathcal{MN}(0_{R \times N}, C_\lambda, C_x) \)

Objective: estimate \(E, S \)
Inverse problems in hyperspectral imaging

Hyperspectral sharpening (deblurring, superresolution, fusion)

Observation model: \(Y_h = X A_x M + N_h \quad Y_m = A\lambda X + N_m \)

- \(X \in \mathbb{R}^{R \times N} \)
- \(Y_h \in \mathbb{R}^{R \times M} \) - observed hyperspectral image
 \((M = N/d^2 \text{ - } d \text{ is the downsampling factor})\)
- \(Y_m \in \mathbb{R}^{L \times N} \) - observed multispectral image
- \(A_x \in \mathbb{R}^{N \times N} \) - (usually a convolution)
- \(A\lambda \in \mathbb{R}^{L \times R} \) - (spectral responses of the MS sensor)
- \(M \in \mathbb{R}^{N \times M} \) - (downsampling matrix)
- \(N_h \sim \mathcal{MN}(0_{R \times M}, C_{h\lambda}, C_{hx}) \)
- \(N_m \sim \mathcal{MN}(0_{L \times N}, C_{m\lambda}, C_{mx}) \)

Objective: estimate \(X \)
Hyperspectral image compressive sensing

Observation model: \(y = Ax + n \)

- \(x \in \mathbb{R}^n, \, n = RN \)
- \(y \in \mathbb{R}^m, \, m \ll n \)
- \(A \in \mathbb{R}^{m \times n} - \text{measurement matrix (often } A = A_x^T \otimes A_\lambda) \)
- \(n \sim \mathcal{N}(0_m, C_n) \)

Objective: estimate \(x \) (equivalently, \(X = \text{vec}^{-1}(x) \))