Traitement photogrammétrique de données acquises par drones

Mehdi Daakir^{1,2}

¹ Vinci-Construction-Terrassement ² Laboratoire LOEMI-IGN

Colloque Photogrammétrie Numérique et Perception 3D : les Nouvelles Conquêtes mardi 15 mars 2016

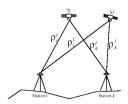
Plan

- 1 Systèmes de positionnement par satellites
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
- 5 Problématiques
- 6 Conclusions

Plan

- 1 Systèmes de positionnement par satellites
 - Présentation
 - Positionnement différentiel
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
- 5 Problématiques
- 6 Conclusions

- GNSS ¹ = constellations de satellites en orbite autour de la Terre qui permettent de déterminer une position et fournissent une mesure de temps
- Les constellations existantes : GPS, Glonass, Galileo, Beidou
- Principe de fonctionnement = Principe de multilatération : connaissant la position et la distance d'au moins 4 satellites à mon récepteur ⇒ l'estimation de la position du récepteur à un instant donné est possible


^{1.} Global Navigation Satellite System

Présentation

- Quelques caractéristiques du système GPS en particulier :
 - → constellation de 30 satellites
 - → émission sur deux bandes L1+L2
 - → échelle de temps associée : GPS-Time
 - $\rightarrow \dots$

- Les signaux son émis sur 2 bandes L1 et L2
 - \rightarrow Code de synchronisation pour le positionnement standard (précision \sim 1-5 m)
 - \rightarrow Les porteuses L1 & L2 ont des longueurs d'ondes respectives : $\lambda_1 = 19.0~cm$ et $\lambda_2 = 24.4~cm$
 - ightarrow La phase des porteuses permet un positionnement de précision optimale \sim 1-3 cm
 - → Contrairement au positionnement sur le code ~ métrique mais non ambiguë, le positionnement sur la phase est ~ centimétrique mais ambiguë
 - → Possibilité de travailler sur une ou sur les deux fréquences en même temps
 - → Le bi-fréquence présente l'avantage de pouvoir combiner les deux longueurs d'ondes pour s'affranchir d'une erreur systématique (effet de la ionosphère)

• Permet d'éliminer un certain nombre d'erreurs systématiques par différentiation des observations :

 \rightarrow La relation entre le récepteur i et le satellite j s'écrit :

$$\phi_i^j = \rho_i^j + c(\delta t_i - \delta t^j) + \tau_i^j - \lambda N_i^j$$

 \rightarrow La simple différence (Δ) entre les deux récepteurs i et k :

$$\Delta \phi_{i,k}^{j} = \Delta \rho_{i,k}^{j} + c(\Delta t_{i,k}) + \Delta \tau_{i,k}^{j} - \lambda \Delta N_{i,k}^{j}$$

 \rightarrow La double différence $(\nabla \Delta)$ par rapport au satellite I:

$$\nabla \Delta(\Phi_{i,k}^{l,j}) = \nabla \Delta(\rho_{i,k}^{l,j}) - \nabla \Delta(\tau_{i,k,iono}^{l,j}) - \lambda \nabla \Delta(N_{i,k}^{l,j})$$

→ La précision sur l'estimation de la position de la station inconnue k est centimétrique sur la mesure de phase

Plan

- 1 Systèmes de positionnement par satellite
- 2 Une brève histoire de la photogrammétrie
 - Présentation générale
 - Un chantier classique
 - La chaîne APERO-MicMac
 - Photogrammétrie, solution miracle?
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
- 5 Problématiques
- 6 Conclusions

Une brève histoire de la photogrammétrie

Présentation générale

 Aimé Laussedat² a l'idée d'utiliser les perspectives dessinées comme des documents métriques : invention de la photogrammétrie (1849) Une brève histoire de la photogrammétrie

Présentation générale

- Aimé Laussedat² a l'idée d'utiliser les perspectives dessinées comme des documents métriques : invention de la photogrammétrie (1849)
- Intérêt pour de la photogrammétrie aérienne

- Une brève histoire de la photogrammétrie
 - Présentation générale
 - Aimé Laussedat ² a l'idée d'utiliser les perspectives dessinées comme des documents métriques : invention de la photogrammétrie (1849)
 - Intérêt pour de la photogrammétrie aérienne
 - Évolution au fil du temps :

Mécanique Analytique

Numérique

- Une brève histoire de la photogrammétrie
 - Présentation générale
 - Aimé Laussedat ² a l'idée d'utiliser les perspectives dessinées comme des documents métriques : invention de la photogrammétrie (1849)
 - Intérêt pour de la photogrammétrie aérienne
 - Évolution au fil du temps :

Mécanique Analytique

Numérique

- Domaines d'application très vastes :
 - → topométrie, métrologie industrielle, ...
 - → architecture, archéologie, numérisation du patrimoine, ...
 - → géologie, sismologie, hydrographie, ...
 - → cartographie satellitaire
- 2. 1819-1904

Traitement photogrammétrique de données acquises par drones

Une brève histoire de la photogrammétrie

Présentation générale

• Un vocabulaire qui porte parfois à confusion!

- Une brève histoire de la photogrammétrie
 - Présentation générale

- Un vocabulaire qui porte parfois à confusion!
- Les 3 phases d'un traitement photogrammétrique :
 - → <u>Étape 1</u>: étalonnage, calibration, calibration interne, calibration intrinsèque, orientation interne, ...


- Une brève histoire de la photogrammétrie
 - Présentation générale

- Un vocabulaire qui porte parfois à confusion!
- Les 3 phases d'un traitement photogrammétrique :
 - → <u>Étape 1</u>: étalonnage, calibration, **calibration interne**, calibration intrinsèque, orientation interne, ...
 - → Étape 2 : calibration externe, calibration extrinsèque, orientation externe, estimation des poses, mise en place, aéro-triangulation, ...

- Une brève histoire de la photogrammétrie
 - Présentation générale

- Un vocabulaire qui porte parfois à confusion!
- Les 3 phases d'un traitement photogrammétrique :
 - → <u>Étape 1</u>: étalonnage, calibration, calibration interne, calibration intrinsèque, orientation interne, ...
 - → Étape 2 : calibration externe, calibration extrinsèque, orientation externe, estimation des poses, mise en place, aéro-triangulation, ...
 - → Étape 3 : corrélation dense, reconstruction 3D, mise en correspondance, calcul du nuage, modèle 3D, carte de profondeur, ...
- L'étape 3 ne sera pas évoquée dans ce qui suit.

- Traitement photogrammétrique de données acquises par drones
- Une brève histoire de la photogrammétrie
 - Un chantier classique
 - 1- Prendre des images de bonne qualité!!

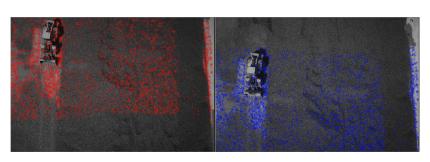
Traitement photogrammétrique de données acquises par drones

- Une brève histoire de la photogrammétrie
 - Un chantier classique

2- Jamais assez d'images!!

- Une brève histoire de la photogrammétrie
 - Un chantier classique
 - 3- Estimation des paramètres internes de la caméra :
 - → Méthode classique sur polygone d'étalonnage

- Une brève histoire de la photogrammétrie
 Un chantier classique
 - 3- Estimation des paramètres internes de la caméra :
 - → Méthode classique sur polygone d'étalonnage
 - établir la relation entre les points dans le repère image et les points dans le repère monde


- π projection conique de $\mathbb{R}^3 \to \mathbb{R}^2$
- $\bullet \ \zeta$ application de $\mathbb{R}^2 \ \to \ \mathbb{R}^2$ intrinsèque à la caméra

- Une brève histoire de la photogrammétrie
 - Un chantier classique
 - 3- Estimation des paramètres internes de la caméra :
 - \rightarrow Il s'agit d'abord de trouver une bonne modélisation intrinsèque de la caméra. Quel modèle choisir pour ζ ?
 - → En général modèle physique :
 - distance principale
 - point principal
 - centre de distorsion
 - fonction de distorsion radiale
 - paramètres de décentrement (axes optiques des différentes lentilles non alignés)
 - défaut d'orthogonalité du plan du capteur par rapport à l'axe optique
 - \rightarrow En pratique :
 - des modèles plus complexes ...

- Une brève histoire de la photogrammétrie
 - Un chantier classique
 - 3- Estimation des paramètres internes/externes de la caméra :
 - \rightarrow Détection de points homologues :

- Une brève histoire de la photogrammétrie
 - Un chantier classique
 - 3- Estimation des paramètres internes/externes de la caméra :
 - \rightarrow Détection de points homologues :

- Une brève histoire de la photogrammétrie
 Un chantier classique
 - 3- Estimation des paramètres internes/externes de la caméra :
 - \rightarrow La compensation par faisceaux :
 - Soit P un point de liaison 3D dans le repère monde/objet vu sur n images et p_i sa projection dans la ième image;

$$f(x,l): \left\{ \begin{array}{c} \cdots \cdots \\ \vec{p_i} - \zeta(\pi(\mathcal{R}_i(\vec{\mathcal{P}} - \vec{\mathcal{C}}_i))) = \vec{0} \\ \cdots \end{array} \right.$$
 (1)

avec :

- x : vecteur des paramètres à estimer
- I : vecteur des observations
- $(\vec{C_i}, \mathcal{R}_i)$: position et orientation de la caméra i
- Minimiser la fonction coût f ⇔ minimiser l'erreur de re-projection
- Si ζ (modélise intrinsèquement la caméra) inconnue ⇔ auto-calibration

Traitement photogrammétrique de données acquises par drones

- La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source

^{3.} Pierrot-Deseilligny Μ. 2015. Free open source photogram-MICMAC with [en ligne]. Les Rencontres Mondiales du metry Logiciel Libre. Disponible sur <https://2015.rmll.info/ micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

Traitement photogrammétrique de données acquises par drones

- La chaîne APERO-MicMac³ de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts

Μ. 2015. 3. Pierrot-Deseilligny Free open source photogramwith MICMAC [en ligne]. Les Rencontres Mondiales du Logiciel Libre. Disponible sur <https://2015.rmll.info/ micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

- La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts
 - \rightarrow Avantages :
 - gestion de données de très très très grande taille!

^{3.} Pierrot-Deseilligny Μ. 2015. Free open source photogram-MICMAC [en ligne]. Les Rencontres Mondiales du <https://2015.rmll.info/ Logiciel Libre. Disponible sur micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

- La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts
 - \rightarrow Avantages :
 - gestion de données de très très très grande taille!
 - chaque étape du calcul peut être contrôlée de façon très fine (différents degrés de complexité)

^{3.} Pierrot-Deseilligny Μ. 2015. Free open source photogram-MICMAC [en ligne]. Les Mondiales Rencontres Disponible <https://2015.rmll.info/ Logiciel Libre. sur micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

- La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts
 - \rightarrow Avantages :
 - gestion de données de très très très grande taille!
 - chaque étape du calcul peut être contrôlée de façon très fine (différents degrés de complexité)
 - produit les résultats intermédiaires et finaux dans des formats ouverts

^{3.} Pierrot-Deseilligny Μ. 2015. Free open source photogram-Mondiales MICMAC [en ligne]. Les Rencontres Disponible Logiciel Libre. sur <https://2015.rmll.info/ micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

- La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts
 - \rightarrow Avantages :
 - gestion de données de très très très grande taille!
 - chaque étape du calcul peut être contrôlée de façon très fine (différents degrés de complexité)
 - produit les résultats intermédiaires et finaux dans des formats ouverts
 - multi-platformes : Linux/Win32-64/MaxOsX

^{3.} Pierrot-Deseilligny M. 2015. Free open source photogram-MICMAC [en ligne]. Les Rencontres Mondiales Disponible Logiciel Libre. sur <https://2015.rmll.info/ micmac-une-solution-libre-de-photogrammetrie?lang=fr> (consulté le 15 septembre 2015)

- Une brève histoire de la photogrammétrie
 La chaîne APERO-MicMac
 - La chaîne APERO-MicMac 3 de l'IGN :
 - → Logiciel gratuit et open-source
 - → Logiciel destiné aux chercheurs/experts
 - \rightarrow Avantages :
 - gestion de données de très très très grande taille!
 - chaque étape du calcul peut être contrôlée de façon très fine (différents degrés de complexité)
 - produit les résultats intermédiaires et finaux dans des formats ouverts
 - multi-platformes : Linux/Win32-64/MaxOsX
 - une documentation est mise-à-jour régulièrement (365 pages au 18/08/2015)
 - 3. Pierrot-Deseilligny M. 2015. Free open source photogrammetry with MICMAC [en ligne]. Les Rencontres Mondiales du Logiciel Libre. Disponible sur : https://2015.rmll.info/micmac-une-solution-libre-de-photogrammetrie?lang=fr (consulté le 15 septembre 2015)

```
Traitement photogrammétrique de données acquises par drones

Une brève histoire de la photogrammétrie

Photogrammétrie, solution miracle?
```

Pourquoi faire de la photogrammétrie?

• la partie acquisition des données est simple & pratique

Photogrammétrie, solution miracle?

- la partie acquisition des données est simple & pratique
- l'acquisition est rentable, prendre des images ~ gratuit

Une breve histoire de la photogrammetri

Photogramm<u>étrie, solution miracle?</u>

- la partie acquisition des données est simple & pratique
- l'acquisition est rentable, prendre des images ∼ gratuit
- la géométrie de la scène est modélisée dans son ensemble

- Une breve histoire de la photogrammetri - Photogrammétrie, solution miracle?

- la partie acquisition des données est simple & pratique
- l'acquisition est rentable, prendre des images ~ gratuit
- la géométrie de la scène est modélisée dans son ensemble
- la précision est arbitraire $\sim \frac{1}{2}$ pixel

- Une brève histoire de la photogrammétrie
 - Photogrammétrie, solution miracle?

- la partie acquisition des données est simple & pratique
- l'acquisition est rentable, prendre des images ∼ gratuit
- la géométrie de la scène est modélisée dans son ensemble
- la précision est arbitraire $\sim \frac{1}{2}$ pixel
- le traitement est ∼ automatique
- ...

Plan

- 1 Systèmes de positionnement par satellite
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
 - Contexte d'évolution
 - Secteur des Travaux Publics
- 4 Le géo-référencement
- 5 Problématiques
- 6 Conclusions

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020

a. Cécilé Chevré : 2015, l'année des drones, 24 novembre 2014, http://

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025

a. Cécilé Chevré : 2015, l'année des drones, 24 novembre 2014, http://

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)

a. Cécilé Chevré : 2015, l'année des drones, 24 novembre 2014, http://

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!
 - \rightarrow Exemples :
 - la construction et l'inspection d'ouvrages

- L'avènement des drones civils?
 - Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!
 - \rightarrow Exemples :
 - la construction et l'inspection d'ouvrages
 - le secteur pétrolier et l'énergie

- L'avènement des drones civils?
 - Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!
 - \rightarrow Exemples :
 - la construction et l'inspection d'ouvrages
 - le secteur pétrolier et l'énergie
 - l'agriculture 2.0

- L'avènement des drones civils?
 - Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!
 - \rightarrow Exemples :
 - la construction et l'inspection d'ouvrages
 - le secteur pétrolier et l'énergie
 - l'agriculture 2.0
 - le transport (surtout ferroviaire)

a. Cécilé Chevré : 2015, l'année des drones, 24 novembre 2014, http://quotidienne-agora.fr/

- Pourquoi un tel engouement pour les drones civiles? Quelques éléments ^a de réponse :
 - → 3% de part de marché aujourd'hui, 20% d'ici 2020
 - → le marché américain va peser 80 milliards € 2025
 - → en France, 300 millions € et 7000 emplois en 2015 (une législation assez innovante)
 - → Les applications civiles sont diverses et variées ⇔ potentiel de croissance considérable!
 - \rightarrow Exemples :
 - la construction et l'inspection d'ouvrages
 - le secteur pétrolier et l'énergie
 - l'agriculture 2.0
 - le transport (surtout ferroviaire)
 - la photographie professionnelle et audiovisuel
 - ...

a. Cécilé Chevré : 2015, l'année des drones, 24 novembre 2014, http://quotidienne-agora.fr/

```
L'avènement des drones civils?

Secteur des Travaux <u>Publics</u>
```

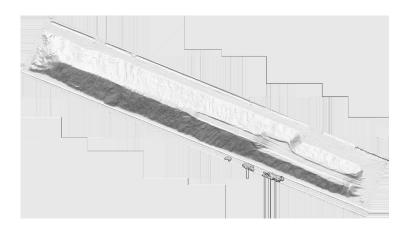
- Avantages apportés au secteur des Travaux Publics :
 - → pratique pour le calcul de volume de stocks en terrassement

- L'avènement des drones civils?

 Secteur des Travaux Publics
 - Avantages apportés au secteur des Travaux Publics :
 - → pratique pour le calcul de volume de stocks en terrassement
 - → adapté au **suivi** des carrières, relevé des lignes à hautes tensions, ...

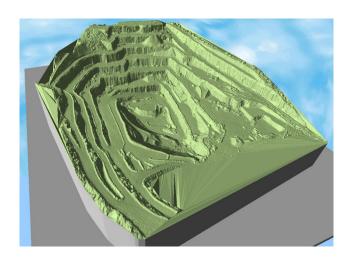
- L'avènement des drones civils?

 Secteur des Travaux Publics
 - Avantages apportés au secteur des Travaux Publics :
 - → pratique pour le calcul de volume de stocks en terrassement
 - → adapté au **suivi** des carrières, relevé des lignes à hautes tensions, ...
 - → apport d'un gain de temps considérable


- L'avènement des drones civils?

 Secteur des Travaux <u>Publics</u>
 - Avantages apportés au secteur des Travaux Publics :
 - → pratique pour le calcul de volume de stocks en terrassement
 - → adapté au **suivi** des carrières, relevé des lignes à hautes tensions, ...
 - → apport d'un gain de temps considérable
 - → avec une caméra embarquée + traitement photogrammétrique = outil de mesure en adéquation avec les tolérances typiques du secteur

- L'avènement des drones civils?
 - Secteur des Travaux Publics
 - Avantages apportés au secteur des Travaux Publics :
 - → pratique pour le calcul de volume de stocks en terrassement
 - → adapté au **suivi** des carrières, relevé des lignes à hautes tensions, ...
 - → apport d'un gain de temps considérable
 - → avec une caméra embarquée + traitement photogrammétrique = outil de mesure en adéquation avec les tolérances typiques du secteur
 - → contribution à la sécurité des employés sur un chantier
 - \rightarrow ... etc


- L'avènement des drones civils?

 Secteur des Travaux Publics
 - Quelques exemples de réalisations chez Vinci-Construction-Terrassement :

- L'avènement des drones civils?

 Secteur des Travaux Publics
 - Secteur des Travaux Publics
 - Quelques exemples de réalisations chez Vinci-Construction-Terrassement :

- L'avènement des drones civils?

 Secteur des Travaux Publics
 - Quelques exemples de réalisations chez *Vinci-Construction-Terrassement* :

Plan

- 1 Systèmes de positionnement par satellite
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
 - Géo-référencement indirect par points d'appui
 - Géo-référencement direct par GPS
 - Quelques solutions commerciales
 - Les solutions Low-Cost / DIY 4
- 5 Problématique
- 6 Conclusions

4. Do It Yourself!

- Le géo-référencement :
 - → Problème de la conversion des poses caméras du système modèle (arbitraire) → un système absolu (en général, le système légal)
 - \rightarrow II s'agit d'estimer les paramètres d'une similitude dans \mathbb{R}^3
 - → La transformation à 7 paramètres de Helmert est souvent utilisée en géodésie

$$g(x,l): \begin{cases} \cdots \\ \vec{\mathcal{P}}_{i|a} - \mu \cdot \mathcal{R} \cdot \vec{\mathcal{P}}_{i|m} - \vec{\mathcal{T}} = \vec{0} \\ \cdots \end{cases}$$
 (2)

avec:

- $ightarrow (\mu, \mathcal{R}, \vec{\mathcal{T}})$: paramètres de la similitude $ightarrow (\vec{\mathcal{P}_i}|_{\mathbf{a}}, \vec{\mathcal{P}_i}|_{\mathbf{m}})$: positions dans les repère respectifs

- Pourquoi la méthode indirecte est la plus utilisée?
- ✓ Avantage, son principe est simple :
 - → mesures dans les images de cibles connues dans le système absolu
 - ightarrow calcul par intersection de faisceaux des positions 3D dans le repère monde
 - → minimisation de la transformation de Helmert
 - → expression des poses caméras dans le nouveau système

Inconvénients :

- → effectuer des mesures terrain, cela coûte cher!
- ightarrow parfois il n'est pas possible de disposer des cibles sur la scène
- → combien de mesures terrain pour une tolérance données? (sur-qualité?)
- → effectuer des mesure images, en général de façon manuelle
- $ightarrow \, ...$

Caractéristiques	eBee ⁵	MAVinci ⁶	BRAMOR ⁷
Précision absolue (cm)	3.0	5.0	1.5
Masse (g)	0.73	2.7	4.5
Autonomie (h)	0.6	0.75	2.5
Récepteur GNSS	RTK	RTK 100 Hz	RTK 20 Hz
GSD ⁸ maximale (cm)	1.5	1.6	0.9
Prix (k€)	25	30	58

^{5.} eBee RTK SenseFly: http://www.sensefly.com

^{6.} MAVinci SIRIUS Pro Topcon: http://www.mavinci.de/

^{7.} BRAMOR rTK : http://www.c-astral.com/

^{8.} Ground Spatial Resolution : fonction de la hauteur minimale de vol et du modèle caméra imposés par le constructeur

- Le géo-référencement
 - Quelques solutions commerciales

eBee

MAVinci

BRAMOR

Caractéristiques	Piksi ⁵	Reach ⁶
crowdfunding	Kickstarter	indiegogo
financement souhaité (k\$)	14	27
soutien reçu (k\$)	166	82
prix d'un kit (\$)	1 000,00	545,00
logiciel de traitement	open-source	RTKlib ⁷
masse (g)	32	13

^{5.} Piksi Swift Navigation

^{6.} Reach Emlid

^{7.} RTKlib est un logiciel open source d'analyse de données GNSS; http:

Le géo-référencement

Les solutions Low-Cost / DIY

Plan

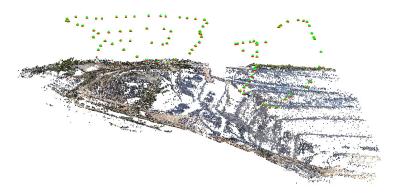
- 1 Systèmes de positionnement par satellites
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
- 5 Problématiques
 - Objectifs
 - Démarche suivie
 - Prototype réalisé
 - Calibration du bras de levier
 - Synchronisation des capteurs
 - Résultats obtenus
- 6 Conclusions

- Problématiques
 Objectifs
 - Objectifs fixés :
 - → Géo-référencer les modèles 3D issus des images uniquement en embarquant un récepteur GPS sur le drone

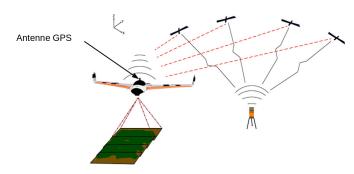
- └ Problématiques
 - —Objectifs
 - Objectifs fixés :
 - → Géo-référencer les modèles 3D issus des images uniquement en embarquant un récepteur GPS sur le drone
 - → Atteindre une précision absolue centimétrique au sol (ou au plus un point terrain)

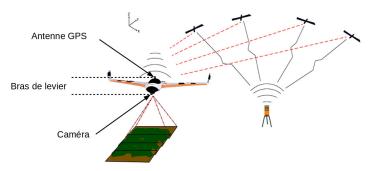
- -Objectifs
 - Objectifs fixés :
 - → Géo-référencer les modèles 3D issus des images uniquement en embarquant un récepteur GPS sur le drone
 - → Atteindre une précision absolue centimétrique au sol (ou au plus un point terrain)
 - → Arriver à cette précision avec un système ± « low cost »

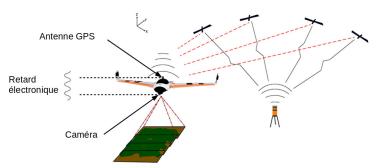
- Objectifs fixés :
 - → Géo-référencer les modèles 3D issus des images uniquement en embarquant un récepteur GPS sur le drone
 - → Atteindre une précision absolue centimétrique au sol (ou au plus un point terrain)
 - → Arriver à cette précision avec un système ± « low cost »
 - → Gain de temps lors de l'acquisition des données : une/pas de mesures terrain destinées au géo-référencement


- Objectifs fixés :
 - → Géo-référencer les modèles 3D issus des images uniquement en embarquant un récepteur GPS sur le drone
 - → Atteindre une précision absolue centimétrique au sol (ou au plus un point terrain)
 - ightarrow Arriver à cette précision avec un système \pm « low cost »
 - → Gain de temps lors de l'acquisition des données : une/pas de mesures terrain destinées au géo-référencement
 - → Gain de temps au niveau du traitement des données : une/pas de mesures image n'est réalisée lors du traitement

- Le géo-référencement des sommets caméras par GPS implique :
 - $\rightarrow \ \text{acquisition des images}$




- Le géo-référencement des sommets caméras par GPS implique :
 - \rightarrow acquisition des images
 - \rightarrow mise en place relative des images


- Problématiques
 - Démarche suivie
 - Le géo-référencement des sommets caméras par GPS implique :
 - \rightarrow acquisition des images
 - → mise en place relative des images
 - ightarrow calcul d'une trajectographie GPS précise

- Le géo-référencement des sommets caméras par GPS implique :
 - \rightarrow acquisition des images
 - ightarrow mise en place relative des images
 - → calcul d'une trajectographie GPS précise
 - ightarrow calibration du bras de levier

- Le géo-référencement des sommets caméras par GPS implique :
 - \rightarrow acquisition des images
 - ightarrow mise en place relative des images
 - ightarrow calcul d'une trajectographie GPS précise
 - ightarrow calibration du bras de levier

- Problématiques
 - Prototype réalisé
 - GeoCube de l'IGN (Module GPS Ublox LEA-6T-0-001) :
 - ✓ Mesures brutes : Temps, Phase (L1), C/A code, Doppler
 - ✓ Possibilité de datation par TimeMark et synchronisation par TimePulse (précis et stable)
 - ✓ Prix: 65,00 \$ + 10,00 \$ antenne patch
 - Longueur des lignes de bases limitée par le mono-fréquence (< à 5 km)</p>

- Problématiques
 - Prototype réalisé
 - Sony Cyber-shot DSC-RX1⁵ :
 - ✓ Compact avec capteur CMOS plein format de 24 Mpx
 - ✓ Objectif professionnel à focale fixe 35 mm
 - X Masse: 482 g
 - X Prix : 2 000,00 €
 - Cadence faible : 0.6 imgs/s
 - X Objectif non amovible
 - Absence de connectique de déclenchement

- Problématiques
 - Prototype réalisé
 - La caméra légère de l'IGN :
 - ✓ Caméra haute résolution de 20 Mpx
 - ✓ Caméra haute cadence : 5 10 imgs/s
 - ✓ Monture objectifs M-Leica
 - ✓ Couche batterie optionnelle
 - ✓ Masse : 300 g (optique comprise)
 - ✓ Global shutter
 - Synchronisation temporelle précise

- Problématiques
 - Prototype réalisé
 - Le drone DJI-F550⁵:
 - ✓ Décollage/Atterrissage à la verticale
 - ✓ Prix (en kit) : 400 €
 - ✗ Autonomie (2 kg, charge utile comprise) < 10 min</p>
 - Logiciel de gestion de vol non abouti & Windows uniquement

^{5.} http://www.dji.com/product/flame-wheel-arf

 Modèle minimal après mise en place des images & calcul de la trajectoire GPS du drone. Pour l'image i :

$$\begin{cases}
\vec{\mathcal{G}}_{i}|_{m} - \mu \cdot \mathcal{R} \cdot \vec{\mathcal{C}}_{i}|_{r} - \vec{\mathcal{T}} - \mathcal{R}_{i} \cdot \vec{\mathcal{O}} = \vec{0} \\
\dots \dots
\end{cases}$$
(3)

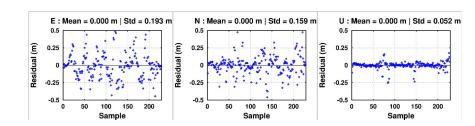
avec:

- $ightarrow ec{\mathcal{G}_i}|_m$: sommet caméra par GPS exprimé dans le repère monde
- $\rightarrow (\mu, \mathcal{R}, \vec{\mathcal{T}})$: paramètres de la similitude
- ightarrow $(\vec{\mathcal{C}_i}|_r,\mathcal{R}_i)$: position et orientation de la caméra dans le repère relatif
- $ightarrow \vec{\mathcal{O}}$: vecteur bras de levier

- Problème : la composante verticale du bras de levier est indéterminée!
- Ajout d'équation(s) de contrainte(s); Pour le GCP ⁶ k par exemple :

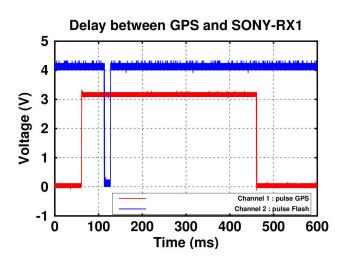
$$\begin{cases}
\vec{\mathcal{G}}_{i}|_{m} - \mu \cdot \mathcal{R} \cdot \vec{\mathcal{C}}_{i}|_{r} - \vec{\mathcal{T}} - \mathcal{R}_{i} \cdot \vec{\mathcal{O}} = \vec{0} \\
\cdots \\
\vec{\mathcal{P}}_{k}|_{m} - \mu \cdot \mathcal{R} \cdot -\vec{\mathcal{P}}_{k}|_{r} - \vec{\mathcal{T}} = \vec{0} \\
\cdots \\
\end{cases}$$
(3)

avec:

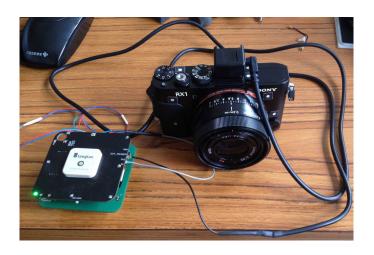

 $\rightarrow \vec{\mathcal{P}_k}|_m$: position du GCP dans le repère monde

 $ightarrow |\mathcal{\vec{P}}_k|_r$: position du GCP dans le repère relatif

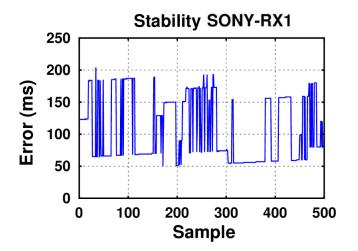
^{6.} Ground Control Point ⇔ Point d'appui


 Résidus de l'équation [3] pour un vol de 231 images (caméra utilisée : Sony Cyber-shot DSC-RX1) :

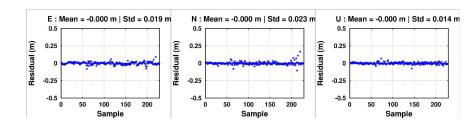
$$\left\{ \begin{array}{c} \vec{\mathcal{G}_i}|_{\pmb{m}} - \mu \cdot \mathcal{R} \cdot - \vec{\mathcal{C}_i}|_{\pmb{r}} - \vec{\mathcal{T}} - \mathcal{R}_i \cdot \vec{\mathcal{O}} = \vec{0} \\ \cdots \end{array} \right.$$



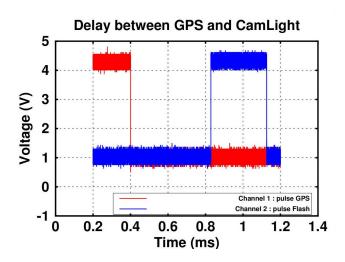
- La synchronisation est réalisée avec une fonction TimePulse du module GPS u-blox :
 - → le récepteur GPS envoie un pulse pour déclencher la caméra
 - → la durée et la fréquence de ce pulse sont paramétrables & stables
 - ightarrow la datation est alignée sur l'échelle de temps GPS dès qu'un satellite est locké
 - \rightarrow l'incertitude de la datation à 1 Hz est : $u = \pm 15 \text{ ns}$


- └ Problématiques
 - Synchronisation des capteurs
 - Mesure en laboratoire du retard électronique entre le récepteur GPS et la caméra Sony Cyber-shot DSC-RX1 (existence) :

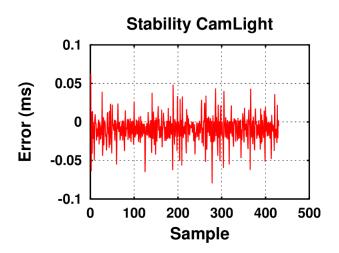
- Problématiques
 - Synchronisation des capteurs
 - Test de stabilité du retard électronique :
 - → La datation est réalisée avec la fonction TimeMark du module GPS u-blox

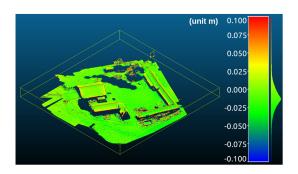


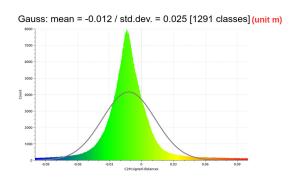
- Problématiques
 - Synchronisation des capteurs
 - Test de stabilité du retard électronique :
 - \rightarrow Tracé de la variation de $\Delta t_i = TimeMark_i TimePulse_i$



• Prise en compte du retard électronique dans le modèle :


$$\begin{cases}
\vec{\mathcal{G}}_{i|m} - \mu \cdot \mathcal{R} \cdot -\vec{\mathcal{C}}_{i|r} - \vec{\mathcal{T}} - \mathcal{R}_{i} \cdot \vec{\mathcal{O}} - \vec{\mathcal{V}}_{i} \cdot t_{i}^{d} = \vec{0} \\
\dots \dots
\end{cases} (4)$$


- Problématiques
 - Synchronisation des capteurs
 - Mesure en laboratoire du retard électronique entre le récepteur GPS et la caméra légère de l'IGN (existence) :


- Problématiques
 - Synchronisation des capteurs
 - Test de stabilité du retard électronique :
 - \rightarrow Tracé de la variation de $\Delta t_i = TimeMark_i TimeMark_{i+1}$

- Problématiques
 - Résultats obtenus
 - Pour les données d'un vol :
 - → Comparaison des modèles 3D issus d'un côté d'un jeu d'orientations calculé à partir de points de référence disponibles et de l'autre côté uniquement en s'appuyant sur les données GPS embarquées :

- Problématiques
 - Résultats obtenus
 - Pour les données d'un vol :
 - → Comparaison des modèles 3D issus d'un côté d'un jeu d'orientations calculé à partir de points de référence disponibles et de l'autre côté uniquement en s'appuyant sur les données GPS embarquées :

Plan

- 1 Systèmes de positionnement par satellites
- 2 Une brève histoire de la photogrammétrie
- 3 L'avènement des drones civils?
- 4 Le géo-référencement
- 5 Problématiques
- 6 Conclusions

- La possibilité d'atteindre une exactitude de 1 cm avec 1 point terrain et 1 fréquence nous semble possible!
- La possibilité de l'atteindre avec 0 point terrain aussi!?
- Le développement d'une autre procédure de calibration du bras de levier nécessitant 0 point terrain (résultats prometteurs)
- Tester l'apport d'une seconde fréquence, prototype ébauché, mais non finalisé
- Aller vers du plus « low cost » en testant des caméras plus accessibles (limitations avec les problématiques de synchronisation)