Colloque SFPT

Photogrammétrie numérique et

perception 3D : les nouvelles conquêtes


Photogrammétrie : bilan et perspectives de 150 années d'histoires

Pierre GRUSSENMEYER

pierre.grussenmeyer@insa-strasbourg.fr

150 ans de photogrammétrie

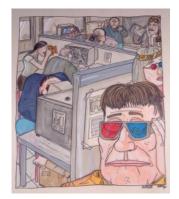
Evolution

1850 – 1900 : métrophotographie

1900 – 1920 : stéréophotogrammétrie terrestre

1920 – 1940 : photogrammétrie aérienne analogique

1940 – 1975 : développement de la photogrammétrie analogique

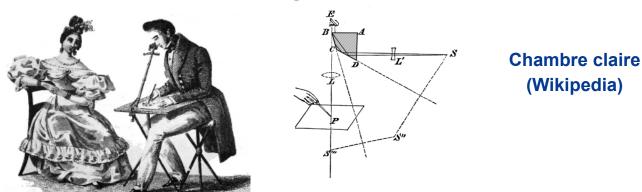

1975 – 1990 : photogrammétrie analytique

1990... : début de la photogrammétrie numérique

Photographie

- Joseph Niepce (1765-1833) vers 1816: héliographie
- Louis Daguerre (1787-1851): plaques d'argent, photogravure
- Nadar (1820-1910): photographies en ballon captif

Perspective et géométrie

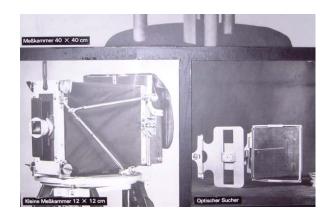

- Albrecht Dürer (1471-1528) : perspective
- René Descartes (1596-1650) : géométrie analytique
- Girard Desargues (1591-1661) : géométrie projective et points de fuite

Métrophotographie

Aimé Laussedat (1819 – 1907):

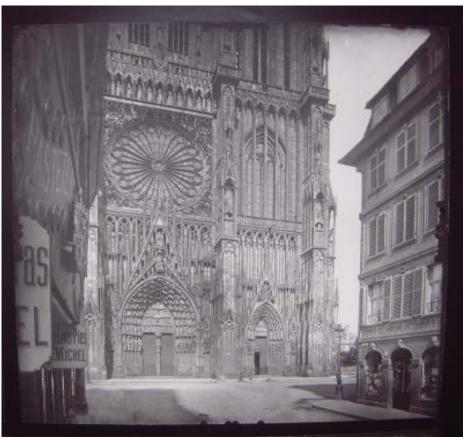
- utilise les propriétés des vues perspectives en 1849 (plutôt terrestres car difficultés d'obtenir des vues aériennes en ballon)
- Utilise la chambre claire de Wollaston (1806) pour le tracé des vues perspectives
- Plans de fortifications, ouvrages militaires...

1878 : photographie (apparition des émulsions au gélatino-bromure)

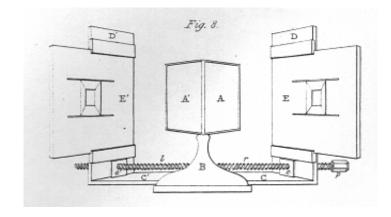


Métrophotographie / photogrammétrie

- Invention en parallèle de la technique photogrammétrique (1858) par Albrecht Meydenbauer (1834 – 1921)
- Première utilisation du mot « photogrammétrie » dans un article en 1893, création d'archives métriques
- Inventeur d'appareils photos métriques (20cm x 20cm, 30cm x 30cm, 40cm x 40cm), plaques de verre
- Photogrammétrie architecturale



Archives de Meydenbauer (cathédrale de Strasbourg)

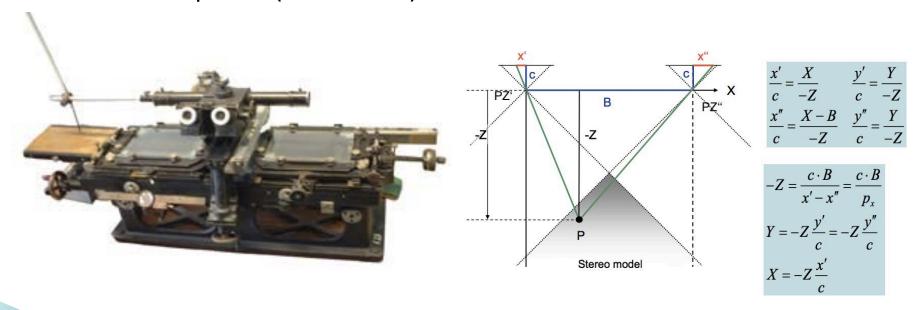

Stéréophotogrammétrie terrestre (1)

Utilisation du stéréoscope de Wheatstone (principe de la vision binoculaire 1838). L'opérateur percevait de la surface photographiée une image virtuelle en relief qu'il explorait au moyen d'une mire déplacée par un aide.

On enregistrait la position de la mire posée sur l'image stéréoscopique sur une planchette horizontale et on lisait son altitude sur une règle verticale.

Contributions to the Physiology of Vision.—Part the First.
On some remarkable, and hitherto unobserved, Phenomena of Binocular Vision. By CHARLES WHEATSTONE, F.R.S., Professor of Experimental Philosophy in King's College, London.

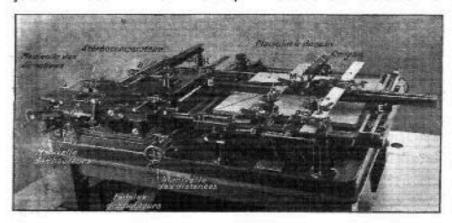
Received and Read June 21, 1838.


(Wikipedia)

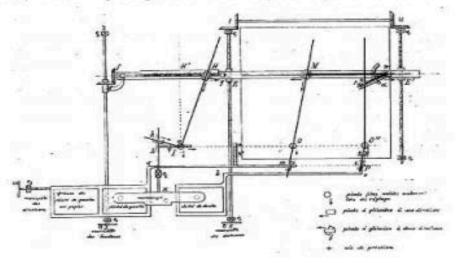
Stéréophotogrammétrie terrestre (2)

1901 : stéréocomparateur de Pulfrich (premier appareil permettant des mesures stéréo précises à 0,01mm)

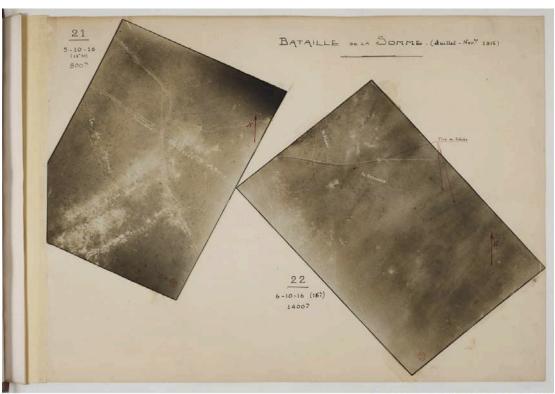
Utilisation d'un microscope de visée binoculaire pour mesurer simultanément les coordonnées des points homologues des 2 photographies, puis calcul des coordonnées des points (cas normal)



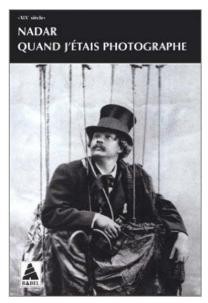
Stéréophotogrammétrie terrestre (3)


1908 : réalisation par Von Orel (Autrichien) du stéréoautographe en collaboration avec Zeiss.

A servi en France jusqu'en 1939, premières restitutions de lignes et de courbes de niveau


Un seul stéréoautographe Von Orel est encore visible en France. Il est exposé au musée alpin à Chamonix. C'est l'un des deux instruments acquis par Paul Corbin lorsqu'il fonda en 1920 la Société Française de Stéréotopographie. Cet appareil servit aux premières restitutions du fond de plan topographique à l'échelle de 1/20 000 de la carte géologique de la partie française du massif du Mont-Blanc qu'il dressa avec Nicolas Oulianoff, professeur géologue de l'École Polytechnique de Lausanne.

Stéréoautographe d'Orel (modèle 1911)


1913 : Premier vol motorisé avec prise de vues à partir d'un aéronef (1903, Premier vol motorisé par les Frères Wright) Essor de l'aviation après la guerre 1914-18 (photogrammétrie aérienne)

Source nallica hof fr. / Ribliothèque nationale de France

Premières photos d'avion 1914-1918

http://gallica.bnf.fr/ark:/12148/btv1b84363424

Nadar 1820-1910

Georges Poivilliers (1892-1968)

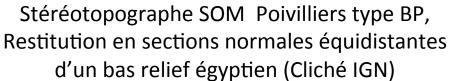
Biographie dans la revue XYZ n°134 (2013) par Robert Vincent et Jean Poivilliers

Théorie:

Chaque point de l'image stéréoscopique observée correspond à <u>l'intersection de deux rayons</u> <u>homologues</u>, c'est-à-dire provenant des images d'un même point du sol, dans les deux <u>faisceaux</u> <u>perspectifs</u>. Cette image n'est <u>une similitude géométrique du terrain</u>, donc susceptible de permettre le tracé de la carte, que lorsque les faisceaux perspectifs ont entre eux, dans l'appareil, la <u>même</u> <u>orientation relative que lors de la prise de vue</u>. Georges Poivilliers donne à cette image le nom d'"image plastique"....

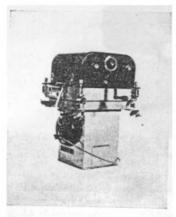
...Il démontre ainsi que le problème fondamental de la stéréophotogrammétrie aérienne, qui consiste à <u>déterminer les douze inconnues que sont les trois coordonnées de chacun des deux points</u> <u>de vue et les trois angles d'orientation de chacun des deux faisceaux perspectifs,</u> peut se décomposer en deux phases : l'orientation relative et l'orientation absolue.

1927 : premier stéréotopographe livré au Service Géographique de l'Armée Premier levé photo aérien en 1931



Georges Poivilliers (1892-1968)

Le stéréotopographe Poivilliers type A, acquis par la Société française de stéréotopographie, 1934 (Revue XYZ)


Développement des matériels et méthodes

- Scheimpflug (1865-1911): « la connaissance de trois points identifiables sur un couple de photographies est suffisante pour déterminer la position absolue du couple »
- 2 solutions :
 - redressement des photos (application aux photos aériennes les principes de base de la métrophotographie)
 - restitution directe de couples stéréoscopiques de photos aériennes sur des appareils de restitution
- Nombreux appareils de restitution analogique : Poivillers-Som (France), Zeiss (Allemagne), Wild-et Kern (Suisse), Nistri et Santoni (Italie), etc.
- http://www.wild-heerbrugg.com/photogrammetry1.htm
- Apparition industrielle des émulsions panchromatiques

Photos aériennes

Chambres de prises de vues

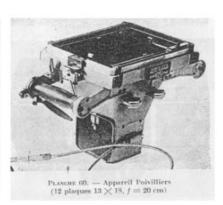


PLANCHE 59. — Planiphote Richard-Labrély (200 pellicules 18 × 24,

PLANCIE 58. — Appareil Labrély Ducommun, type Cadastral (60 plaques 18 × 24)

 Roussilhe, H., 1936. La photogrammétrie et ses applications générales, Tomes 1 et 2. Encyclopédie industrielle et commerciale, Librairie de l'enseignement techniques, L. Evrolles (Paris).

Liban : archives de l'armée du Levant 1930-37 (Château de Beaufort)

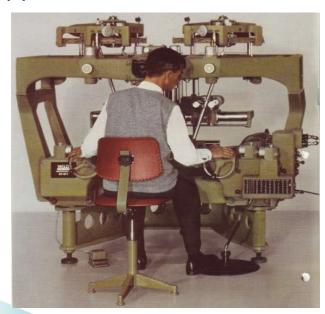
Grussenmeyer, P., Yasmine, J., 2003. The Restoration of Beaufort Castle (South-Lebanon): A 3D Restitution According to Historical Documentation. In XIXth CIPA International Symposium, Antalya, Turquey. IAPRS Vol. XXXIV-5/C15, pp. 322-327.

Développement de la photogrammétrie analogique

- Développement de la cartographie :
 - 1940 : SGA devient l'IGN
 - Après la guerre, plans d'équipements à produire dans des délais raisonnables
- Peu de modifications dans le domaine de la restitution, mais plus de précision et de commodité d'emploi
- Triangulation photographique (fentes radiales, armée américaine)
- 130 appareils de restitution à l'IGN (Caillemer, 1955)
- Sélection des opérateurs (capacité de vision stéréoscopique)
- Amélioration de la qualité des images photographiques
- 1940 : émulsions IR en fausses-couleurs par Kodak
- Nouvelles chambres de prise de vues métriques grand-angulaires, et super grandangulaires
- 1957 : lancement de Spoutnik, révolution dans les systèmes de transmission et de l'informatique, suivi en 1972 par Landsat (observation de la Terre par satellite)

Photogrammétrie analogique

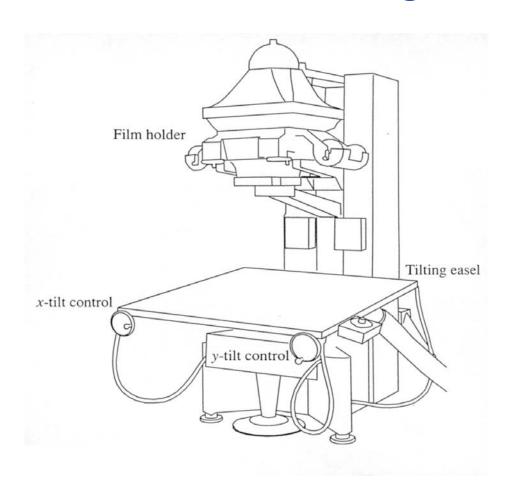
Cours de photogrammétrie en ligne sur le site web de l'ENSG


http://cours-fad-public.ensg.eu/course/view.php?id=112

Photographies métriques (repères de fond de chambre)

Protocoles d'orientation complexes (relative, absolue) 🖰

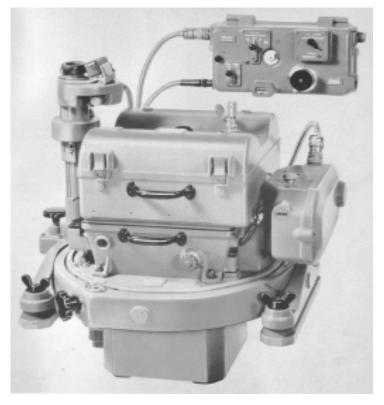
Appareils de stéréorestitution reliés à un traceur



Redressement d'images

Systèmes analogiques (Kern, Aarau et Wild, Heerbrugg), 1922-1990.

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
A1	1922		3 prototypes	
A2	1926	1941	28	
A4	1933	1963	33	Photogrammétrie terrestre avec C12
Ordovás- Kern	1930		1 prototype	
A5	1937	1953	90	Premier appareil universel de Wild, cheval de bataille des années de guerre
A6	1940	1953	115	A5 simplifié
PG0	1946		1 prototype	Concept très avancé, prix trop élevé
A7	1952	1972	412	Deuxième appareil universel de Wild
A8	1952	1980	1035	L'appareil de référence pendant trois décennies
PUG3	1959	1973	310	Marquage et report des points pour la triangulation aérienne
B8	1961	1972	721	Avec le B8S, l'appareil Wild de précision moyenne le plus produit


Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.

PG1	1960		3 prototypes	
PG2, PG21	1960	1985	>700	Instrument le plus important de Kern de la classe de précision du A8
A9	1959	1974	71	Troisième appareil universel de Wild à format réduit
PUG4	1968	1985	449	Amélioration du PUG3 avec zoom
A10	1969	1984	308	Quatrième appareil universel de Wild
B9	1969	1971	31	Demi-format comme complément du A9
B8S	1971	1982	808	Appareil Wild de précision moyenne, le plus important
PG3	1971	1981	30	Appareil universel de Kern
PMG2	1977	1994	>60	Marquage des points avec qualité d'un comparateur
AM/AMH	1977	1983	173	
AMU	1979	1981	21	Cinquième appareil universel de Wild
AG1	1981	1990	230	Appareil universel léger de prix abordable de la classe de précision du A8

Caméras aériennes Wild, Leica

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
C1	1925			F=165 mm
C2	1927	1944	50	F=165 mm, 10x15 cm, 13x13 cm plaques en verre, caméra tenue à la main, support pour fixer deux caméras convergentes
C3	1929		1 prototype	F=165 mm
RC3	1937	1941		F=210 mm, f/4.5, 18x18 cm
RC5/RC5a	1944	1956	130	F=120/210 cm, 18X18 cm
RC7/RC7a	1949	1972	15	F=170 cm, 14x14 cm, caméra automatique à plaques
RC6	1951	1955		F=165 mm, 12.8x12.8 mm
RC8	1956	1972	382	F=115/152/210 mm, 18x18 cm (plaques) et 23x23 cm (film).
			0.000	Cheval de bataille
RC9	1958	1972	100	F=88 mm, f/5.6
RC10	1969	1984	380	F=88/153/210/303 mm
RC10a	1982	1988	64	Comme RC10 mais commandée par microprocesseur
RC20	1987	1993	138	Comme RC10a mais avec compensation du filé, FMC
RC30	1993	aujourd'hui	>400	Comme RC20 mais avec support stabilisé par gyroscopes
ADS40	2001	aujourd'hui	>15	Premier capteur numérique commercial aéroporté avec 10 canaux

RC8

Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.

Image métrique RC20, focale 150 mm, 4 repères de fond de chambre

Repères de fond de chambre

105.9960 -105.9930

-106.0040 -106.0010

-105.9970 105.9940

105.9970

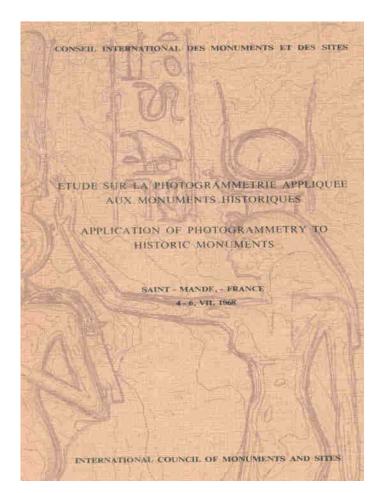
106.0000

Sans distorsions optiques

Caméras terrestres Wild

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
P3	1926	1946	inconnu	Premier photothéodolite
C12	1933	1963	150	Caméra stéréo terrestre
P30	1946	1970	>280	Perfectionnement de la P3
C40	1968	1983	35	Caméra stéréo
C120	1968	1984	142	Successeur de la C12
P32	1972	1987	312	Caméra fixée sur théodolite
P31	1974	1987	122	Caméra terrestre universelle

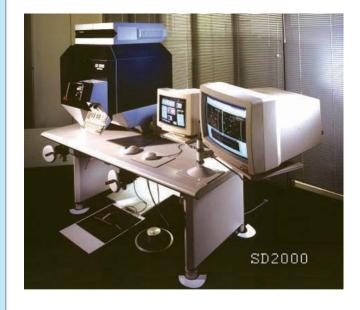
Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.



1968 : création du CIPA (comité mixte ISPRS & ICOMOS)

Comité International de Photogrammétrie Architecturale (CIPA) http://cipa.icomos.org

Hommage à Maurice Carbonnell


Photogrammétrie analytique

- Invention en 1957 par Helava du stéréorestituteur analytique
- Equations de colinéarité
- Modernisation des appareils analogiques (codeurs, traceurs)
- Nouvelle génération de stéréorestituteurs analytiques
- Informatique (PDP, VAX, UNIX, PC)
- Traceur remplacé par un écran graphique (Autocad, Microstation)
- Mesure assistée par ordinateur (pour les MNT par ex.)
- Facilité de (re)mise en place des couples de photos
- Fin du marquage des photos pour l'aérotriangulation (PUG Wild)
- Calculs d'aérotriangulation (faisceaux)
- Chambres de prises de vues
 - Aériennes : métriques, sans distorsions
 - Terrestres: semi-métriques, amateurs (avec distorsions)
 - Argentique, premiers appareils photos numériques (années 1990)

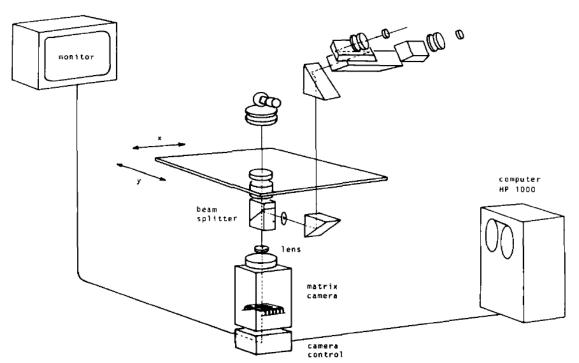
Systèmes analytiques développés en Suisse

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
B8 Stereomat			1 prototype	Corrélation automatique en collaboration avec Raytheon USA
A2000			1 prototype	Appareil automatique pour orthophotos
OR1	1975	1991	88	Appareil pour orthophotos à commande numérique
AC1	1980	1987	45	Appareil Wild de très grande précision
DSR1	1980	1984	30	Appareil très compact. Commande basée sur plusieurs microprocesseurs
DSR11	1984	1989	100	Version simplifiée du DSR1
BC1	1982	1984	82	
BC2	1984	1989	184	
DSR12 DSR14 DSR15	1988 1988 1988	1991 1991 1991	130	Plate-forme PDP Plate-forme PC Plate-forme VAX
BC3	1989	1990	65	Plate-forme PC UNIX
SD2000	1991	aujourd'hui	>400	
SD3000	1992	aujourd'hui	>100	



Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.

Stéréorestituteurs analytiques (ENSAIS)


WILD AC1 en 1987 (Data General RDOS)

Planicomp Zeiss P33 en 1992 (PC Windows)

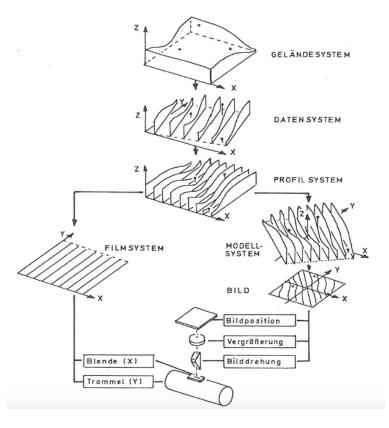
Méthodes analytiques et automatiques

1984 : Ackermann (corrélation d'images), ajout de caméras CCD sur Planicomp C100

Ackermann, F., 1984.

Digital image correlation: performance and potential application in photogrammetry.

Photogrammetric Record, 11(64): 429–439.


Frg. 4. Hardware configuration of Planicomp C100 and CCD video camera.

Systèmes analytiques pour les orthophotos

Orthoprojecteur analytique ORTHOCOMP Z2 (Zeiss), 1980

1975 – 1990

Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
C1	1925			F=165 mm
C2	1927	1944	50	F=165 mm, 10x15 cm, 13x13 cm plaques en verre, caméra tenue à la main, support pour fixer deux caméras convergentes
C3	1929		1 prototype	F=165 mm
RC3	1937	1941		F=210 mm, f/4.5, 18x18 cm
RC5/RC5a	1944	1956	130	F=120/210 cm, 18X18 cm
RC7/RC7a	1949	1972	15	F=170 cm, 14x14 cm, caméra automatique à plaques
RC6	1951	1955		F=165 mm, 12.8x12.8 mm
RC8	1956	1972	382	F=115/152/210 mm, 18x18 cm (plaques) et 23x23 cm (film). Cheval de bataille
RC9	1958	1972	100	F=88 mm, f/5.6
RC10	1969	1984	380	F=88/153/210/303 mm
RC10a	1982	1988	64	Comme RC10 mais commandée par microprocesseur
RC20	1987	1993	138	Comme RC10a mais avec compensation du filé, FMC
RC30	1993	aujourd'hui	>400	Comme RC20 mais avec support stabilisé par gyroscopes
ADS40	2001	aujourd'hui	>15	Premier capteur numérique commercial aéroporté avec 10 canaux

Caméras aériennes Wild, Leica

Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.

Photogrammétrie terrestre

- Arrêt de la production des chambres métriques
- Appareils photos semi-métriques (repères de fond de chambre ou réseau de croix)
- Début de la photogrammétrie multi-image (photos sur table à digitaliser),
 Elcovision, Rollei, etc...

	Fabricant	Type	Format de l'image [mm²]	Distance principale [mm]
Chambres	Hasselblad	MK70	60 x 60	60, 100
métriques	Wild	P32	65 x 90	64
	Wild	P31	100 x 130	45, 100, 200
	Zeiss	UMK 1318	130 x 180	65, 100, 200, 300
Chambres	Wild	C 40/120	65 x 90	64
stéréo	Zeiss	SMK 40/120	90 x 120	60
	Rollei	3003	24 x 36	15 - 1000
Chambres	Leica	R5	24 x 36	18 - 135
semi-	Rollei	6006	60 x 60	40 - 350
métriques	Hasselblad	IDAC	55 x 55	38, 60, 100
	Pentax	PAMS 645	40 x 50	35 - 200
	Linhof	Metrica 45	105 x 127	90, 150
	Rollei	R_metrica	102 x 126	75, 150
	Rollei	LFC	230 x 230	165, 210, 300
	Geodetic Services	CRC-1	230 x 230	120, 240, 450

Conclusion sur les solutions analytiques

- Coût élevé des licences, coût de la maintenance, pannes...
- Gains de productivité par rapport aux systèmes analogiques
- Mise en place des couples, des bandes, saisie d'aérotriangulation, stéréorestitution sur écran (Autocad, Microstation), saisie de MNT
- Systèmes analytiques utilisés jusqu'en 2005
- Communauté de spécialistes
- Corrélation (Ackerman 1984), début de la mesure automatique
- Détecteur de Harris (1988)
- Images numériques > photogrammétrie numérique

Photogrammétrie numérique

Début des années 1990 :

- Écrans graphiques, carte graphique, gestion de la stéréo
- Mêmes fonctionnalités que les stations analytiques sans la contrainte de mise en place des photos
- Traitement des bandes / blocs de photos (aérotriangulation)
- Spatiotriangulation d'images SPOT

Matériel:

- PC (développement rapide des ordinateurs personnels)
- Premiers scanners personnels, numérisation des photos
- Premiers appareils photos numériques (Kodak, Fuji, Olympus, Apple, etc...)
- Service Kodak Photo CD (format PCD) pour numériser les diapos et moyens formats
- Premiers scanners photogrammétriques (1989, DSW Leica), coût
- Développement GPS/INS (stéréopréparation, aérotriangulation, navigation)

Photogrammétrie numérique

Logiciels:

- DVP (Univ. Laval, Québec), 1988
- Stations de travail photogrammétriques (choix analytique/numérique)
- Gestion de la stéréo (stéréoscope, lunettes actives, passives)
- Premiers logiciels à faible coût (Photomodeler, ShapeCapture, Canoma, Kodak Dimension, 3D Builder Pro, Photo3D, Image Modeler, etc.)
- ENSAIS : TIPHON (1996)
- Orthophotos à partir d'images scannées (par ex. Strasbourg en 1998)
- Utilisation d'images terrestres, aériennes, spatiales (SPOT)

Objectifs:

- Reproduire le fonctionnement des systèmes analytiques et automatiser!
- Introduire la corrélation d'images (mesure des repères de fond de chambre, orientation relative, mesure de points homologues, cibles codées)...1996

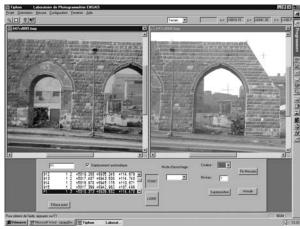
Systèmes numériques (Leica)

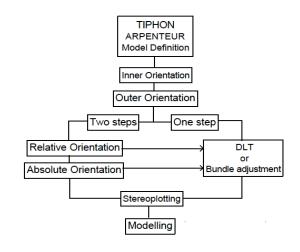
Produit	Début de fabrication	Fin de fabrication	Unités vendues	Demande du marché
DSP1	1988		1 prototype	Première station numérique de Kern
DSW100	1989	1994	30	Scanner film de précision HAI-100
DSW200	1994	1997	60	
DSW300	1997	1999	60	Avec système automatique pour rouleau de film
DSW500	1999	2002	70	
DSW600	2002	aujourd'hui	>50	
DPW	1992	2003	>1000	Leica est partenaire de vente exclusif des «Digital Photogram- metric Workstations» basées sur un matériel standard
Orthobase	1999	aujourd'hui	>2000	Partie de ERDAS Imagine, dès 2001 propriété de Leica Geosystems
LPS	Sept. 2003			Leica Photogrammetric Suite

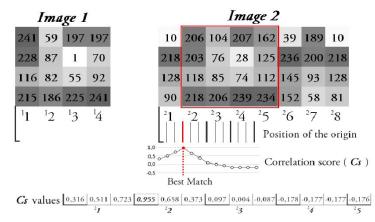
Chapuis, Fricker, Hughes, Traversari (2003). Développement de la photogrammétrie en Suisse. Geomatik Schweiz.

Société	Modèle	Date d'introduction
Autometric	Vision Softplotter	mai 1994
Carl Zeiss	Phodis	1993
Continental Hightech Services (Paris)	Photomod	1996
DAT/EM Systems International	Summit PC	mai 1997
DVP Geomatic Systems Inc.	DVP 4.0	décembre 1996
ERDAS	Erdas Imagine Orthomax	juin 1993
Help Service Mapping Ltd	Pho TopoL	décembre 1995
Intergraph Corporation	Imagestation 6887	avril 1994
Intergraph Corporation	Imagestation Z	mars 1997
International SysteMap Corp.	Digital Image Analytical Plotter et SysImage Digital Orthophoto System	juin 1991
KLT Associates, Inc.	Atlas-DSP	juin 1995
Leica AG	Socet SET	mars 1996
Matra Systèmes et information	Traster T10-T10 V2	juin 1994
Microimages, Inc.	TNTmips; V5.70	juin 1995
Rollei fototechnic Gmbh	Rolleimetric CDW	septembre 1996
R-WEL Inc.	Desktop <mapping (dms)="" 4.04<="" system="" td=""><td>mars 1987</td></mapping>	mars 1987
Siscam s.r.l.	Stereometric Pro	octobre 1993
State Siberian Academy of Geodesy	Siberian Digital Stereoplotter (SDS)	mai 1996
Topcon Corporation	PI-1000	juillet 1988
VirtuoZo Systems Pty Ltd	V 1.11	juin 1996

Tableau 7.4. Liste des systèmes de photogrammétrie numérique (DPW, « digital photogrammetric workstation » en anglais) commercialisés en 1997 (extrait de la revue Geomatics Info Magazine, juillet1997).


Systèmes de photogrammétrie numériques (1997)


Source : Manuel de Photogrammétrie (1998)



Photogrammétrie numérique à l'ENSAIS : TIPHON, ARPENTEUR (web)

Photogrammétrie terrestre (accessible aux non-spécialistes)

Relevés photogrammétriques simplifiés (1994)

3x3 règles du CIPA

3 règles géométriques :

- préparation des informations de contrôle
- relevé multi-image tout autour de l'objet
- prendre des couples stéréo pour la stéréorestitution

3 règles photographiques :

- la géométrie interne de la chambre doit être constante pour l'ensemble des clichés
- choisir des conditions d'exposition homogènes
- sélectionner la chambre la plus stable et le plus grand format disponible

3 règles d'organisation :

- faire des croquis adéquats
- écrire des protocoles adéquats
- ne pas oublier la vérification finale

Version 2013 sur http://cipa.icomos.org

Scanners photogrammétriques (à partir de 1990)

Leica DSW500

Zeiss SCAI

Vexcel Ultrascan 5000

DSW700

Digital Scanning Workstation

Scanning either IR, color or black & white film transparencies, a large-area 12-bit sensor scans imagery at the highest possible color fidelity.

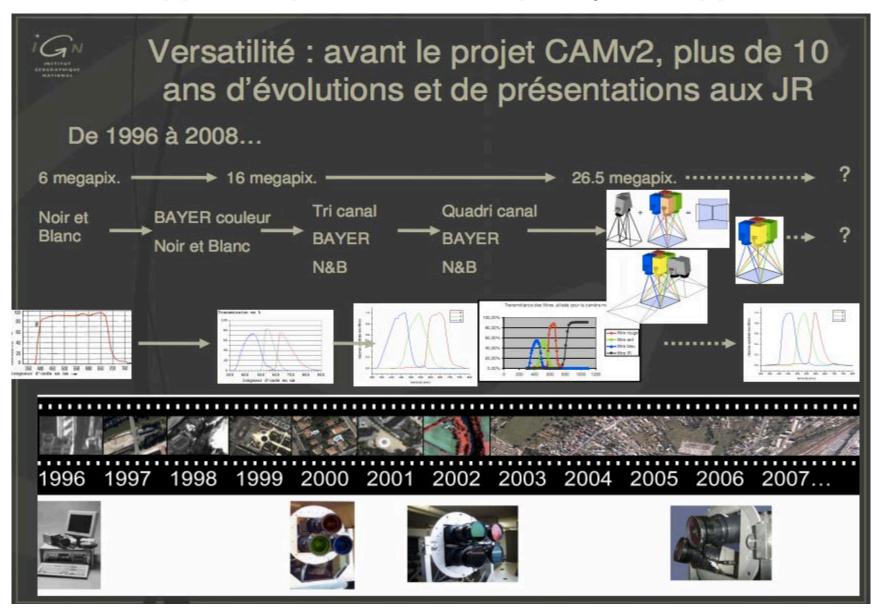
2000

Concepts de chambres de prises de vues numériques

Nouvelle génération de capteurs pour la photogrammétrie :

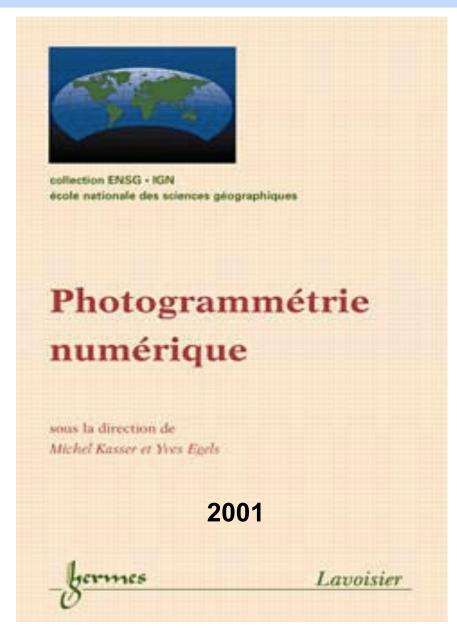
- Matrice / barrette
- Une ou plusieurs têtes de caméras
- Moyen format / grand format
- Géoréférencement direct (GPS/IMU)

IGN : début du projet caméra numérique au LOEMI en 1996


Qualité des images numériques (fidélité radiométrique, niveau de bruit, qualité géométrique)

2000 : Congrès ISPRS à Amsterdam (caméras numériques)

- 2001 Leica ADS40 (barrette)
- 2001 Zeiss/Intergraph DMC (grand format, 4 caméras)
- 2003 Vexcel Ultracam D (grand format, 8 caméras)



Appareils photos numériques (développements IGN)

Souchon, JR2011

Après 10 ans de photogrammétrie numérique

1997: cartographie mobile (1^{er} symposium MMT), MMT2015.org (9^e)

1998 : développement de l'Internet (nouveaux acteurs, nouvelles applications)

1999 : descripteur SIFT publié par Lowe

Rapprochement Vision par ordinateur et Photogrammétrie

Caméras numériques aériennes (ADS, DMC, IGN, Vexcel), métriques

2000 : photographie analogique 80%, numérique 20 % (2012 : 20% / 80%)

L'acquisition numérique des prises de vues aériennes, initiée en 1999, généralisée depuis 2005 à l'IGN

Automatisation dans les logiciels DPW, MNT, orthophotos (vraies)

Caméras numériques terrestres (grand public), non métriques

Dans un avion...

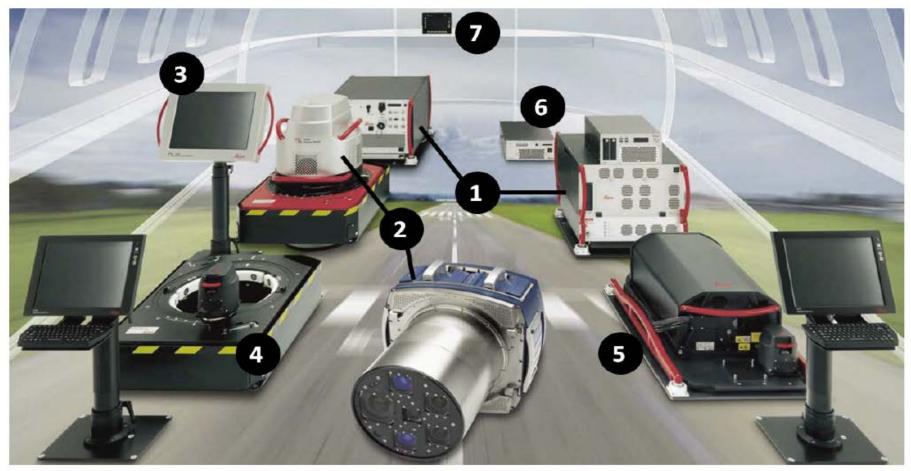


Figure 28 : Vue d'ensemble des équipements embarqués pour un vol photogrammétrique. 1) Unités de stockage 2) Caméras 3) Moniteur 4) Plateforme gyroscopique 5) LiDAR 6) centrale inertielle 7) Contrôleur de trajectoire (pilote) (source : publicité Leica).

BD ORTHO depuis 2003

BD ORTHO®

La BD ORTHO® est l'image géographique du territoire national, la France vue du ciel.

ORTHO HR® >>

VOIR LE TERRITOIRE À UNE RÉSOLUTION DE 20 CM

Une mosaïque d'orthophotographies numériques en Haute Résolution (la taille du pixel terrain est de 20 cm) produite par département.

BD ORTHO® 50 CM >>

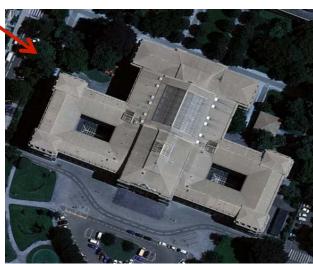
VOIR LE TERRITOIRE À UNE RÉSOLUTION DE 50 CM

L'orthophotographie départementale de l'IGN, l'outil numérique de référence des collectivités et des ministères, pour mettre en valeur le territoire, enrichir la visualisation de vos données et de vos projets.

BD ORTHO® 2,5 M >>

VOIR LE TERRITOIRE À UNE RÉSOLUTION DE 2,5 M

L'orthophotographie départementale de l'IGN à une résolution de 2,5 m.

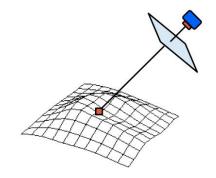


Des orthophotos à moins de 10 cm en milieu urbain

14400 x 9400 pixels

Taille du pixel au sol : 15cm Strasbourg (2007)

9 cm en 2013 (DIMAC)


Orthophotos

Les orthophotos remplacent les cartes

Vraies orthophotos (coût)

De moins en moins de stéréorestitution

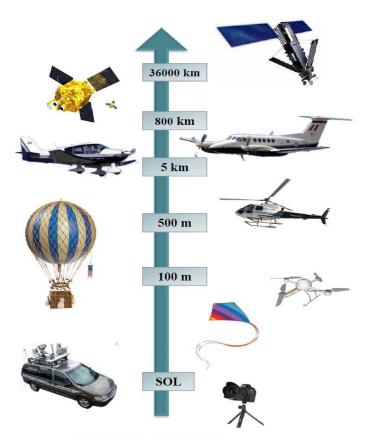
Monorestitution

Evolution du marché de la photogrammétrie aérienne

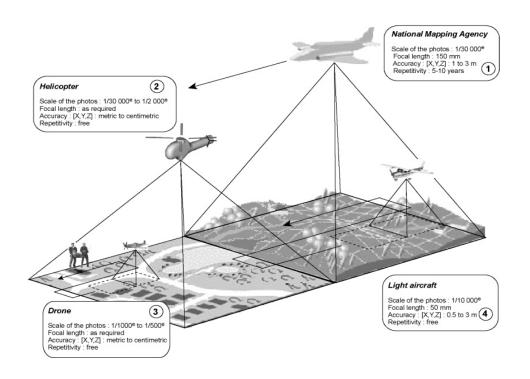
Vues verticales et obliques

Microsoft (BingMaps) vendu à UBER en 2015

http://www.dailycamera.com/business/ci_28402965/uber-buys-boulder-bing-operations-shore-up-mapping

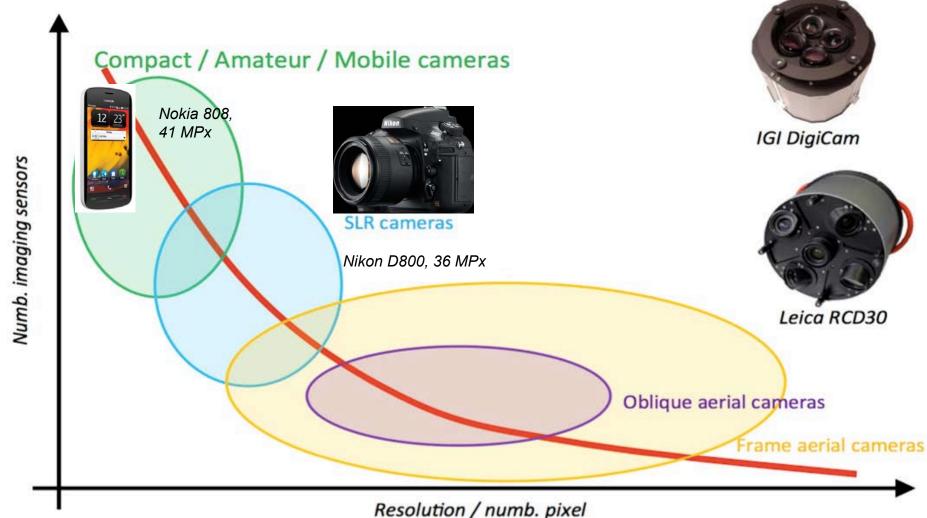

Moins de fabricants de caméras aériennes, nombreux fabricants de drones

Drones en France: 100 sociétés en 2012, 2000 en 2015 (Aviation Civile)


USA: 180000 drones enregistrés en janvier 2016

Photogrammétrie à toutes les échelles

D'après SNEPPIM (2012) : rédaction d'un guide de recommandations à l'attention des maîtres d'ouvrage et maîtres d'œuvre pour caractériser les travaux topographiques par méthodes aériennes tels que la photogrammétrie, la lasergrammétrie et la thermographie.

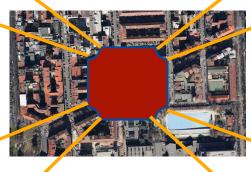

Deux communautés :

Spécialistes : aérien, cartographie, orthophotos

Nouveaux utilisateurs : terrestre, drone (H<150 m)

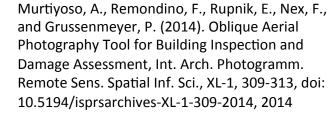
2015

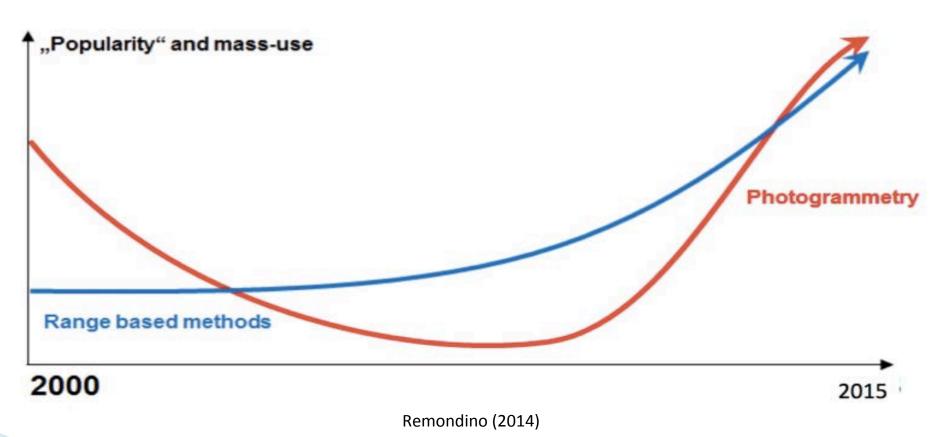
Imaging Sensors


Resolution / numb. pixel

Remondino (2014)

1 image nadirale, 4 images obliques





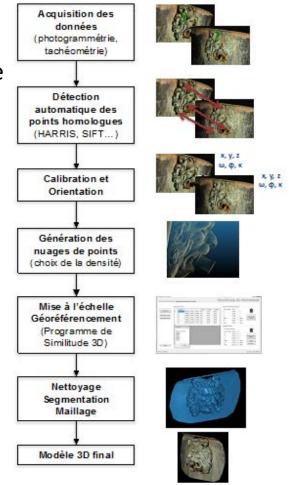
LiDAR (nuages de points denses)

A partir de 2000, développement des systèmes LiDAR aéroportés et terrestres

Pierre Grussenmeyer SFPT 16/3/2016

Photogrammétrie / Vision **Balayage Laser Image** data acquisition Range data acquisition (dense 3D point cloud) Image pre-processing Calibration and orientation Editing and alignment Measurements & dense 3D point cloud generation Surface generation, feature extraction and Surface generation, feature extraction and texture mapping texture mapping Visualization, GIS products, replicas, Visualization, GIS products, replicas, inspection, virtual restoration, etc. inspection, virtual restoration, etc.

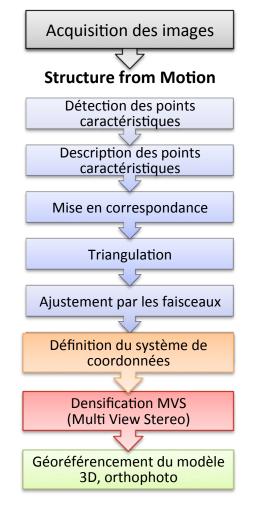
Nuage de points par photogrammétrie ou vision


Nouveaux acronymes couramment utilisés depuis 2005 :

- RANSAC : random sample consensus
- SIFT : scale-invariant feature transform (transformation de caractéristiques visuelles invariante à l'échelle)
- SfM: structure for motion (structure par le mouvement)
- SURF : speeded up robust features

Automatisation des calculs :

- Détection automatique des points d'intérêt
- Orientation automatique des images
- Génération de nuages de points denses


Logiciels: libres et gratuits, web (upload), 1000 à 3000 €

Photogrammétrie vs. Vision

- Photogrammétrie
 - quelques contraintes
 - Précision élevée et fiabilité (cartographie et auscultation)
 - Orientation des caméras et calibration
 - Calibration séparée de la caméra (orientation interne)
 - Points de jonction (orientation externe) + GCPs (absolute orientation)
- Vision par ordinateur
 - peu de contraintes
 - automatisation (robotique et inspection)
 - Orientation des caméras (pose) et calibration :
 - Calibration de la caméra (OI) + calcul de la pose (OE) simultanément → SfM
 - Pas d'orientation absolue → GCPs nécessaires!
 - Modèle de caméra souvent simplifié → précision ↓

Photogrammétrie vs. Vision

TABLE I. Examples of roughly comparable terms in the terminology of computer vision and photogrammetry.

Computer vision	Photogrammetry
Stereo correspondence problem	Image matching
Fundamental-matrix method	Relative orientation
Fundamental matrix	Coplanarity condition
Intrinsic parameters	Interior orientation parameters
Extrinsic parameters	Exterior orientation parameters
Image of the absolute conic	Self-calibration theory
Triangulation	Intersection
Trifocal tensor	Tri-stereoscopic imagery
Minimising cost function	Least squares estimation
Camera or optical centre	Perspective centre
Camera coordinate frame	Image coordinates
World coordinates	Ground or object space coordinates
Canonical configuration	Normal case

Editorial: Computer Vision and Photogrammetry: Interaction or Introspection? THE PHOTOGRAMMETRIC RECORD

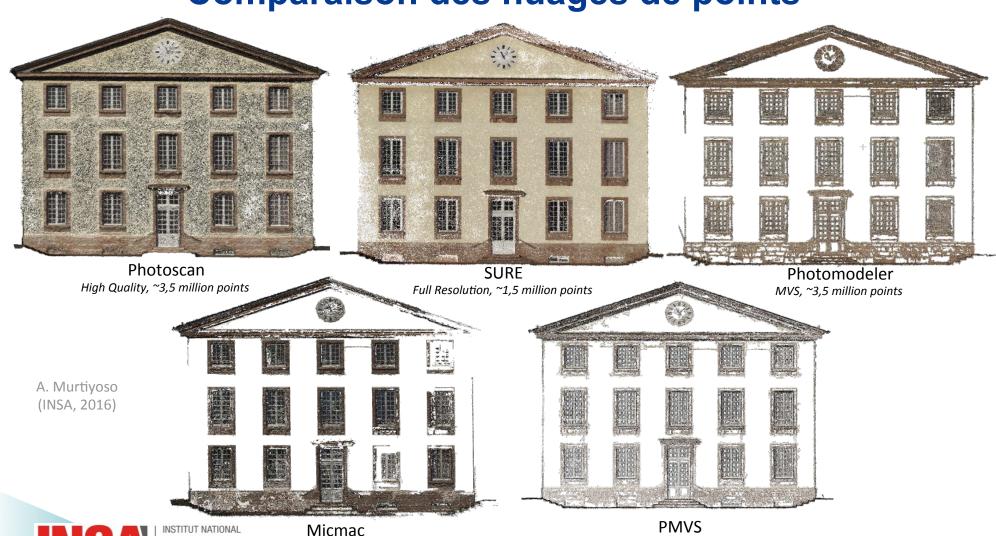
Volume 30, Issue 149, March 2015, Pages: 3-7, Stuart I. Granshaw and Clive S. Fraser

Logiciels

Libres et gratuits : Bundler PMVS, Photosynth et PMVC, Visual SFM, MicMac-Apero

Web (upload gratuit): Arc3D, 123D Catch

Photoscan, Pix4D, Acute 3D, PhotoModeler Scanner, Correlator 3D, Menci Software, Recap, SURE

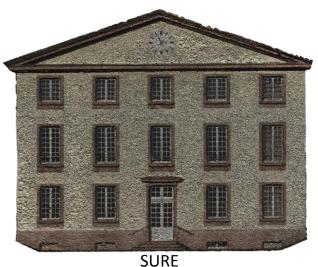

https://en.wikipedia.org/wiki/Comparison of photogrammetry software

Approche « patch-based » (PMVS, Patch-based Multi-View Stereo Software) Cartes de profondeur (MicMac)

Pavillon Joséphine, acquisition par drone, Strasbourg (2016)

Comparaison des nuages de points



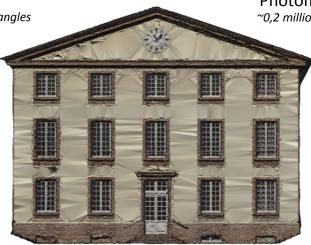

C3DC BigMac, ~1 million points

~0,4 million points

Comparaison des modèles maillés

Photoscan ~6,8 million triangles

~3,1 million triangles



Photomodeler ~0,2 million triangles

A. Murtiyoso (INSA, 2016)

Micmac ~2 million triangles

PMVS

~0,8 million triangles

Séminaire PFE - le 10 mars 2016

Conclusions

Une communauté élargie (vision, photogrammétrie)

Photogrammétrie pour tous, nouvelles applications

Approche « nuage de points », évolution des méthodes de densification Deux **familles de logiciels** :

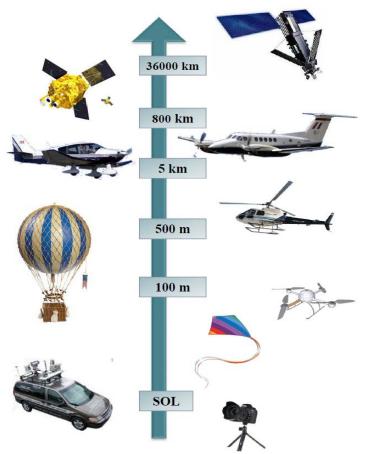
Stations de travail, taille des images (système de vision stéréo), spécialistes Libres ou à coût réduit (sans stéréo, nuages de points denses, modèles maillés, orthophotos)

Bundle adjustment (aérotriangulation)

Traitements automatiques (gestion des paramètres)

Masse de données (milliers de photos)

Qualité des capteurs ?


Bonne qualité des caméras aéroportées à moyen et à grand format

Terrestre et drone : évaluation des capteurs, méthodologie prise de vues, distorsions

Nouveaux utilisateurs : besoin de formation, paramétrage des calculs, évaluation des résultats, notions de géodésie – topographie, géoréférencement

Perspectives pour la photogrammétrie

Nuages de points denses (moins de 10 ans de recul)

- De plus en plus de satellites capables de fournir des images à petit pixel (métrique), Ikonos (1999) et Pléiades (2011)
- Cartographie aérienne : orthophotos, modèle 3D, canyons urbains (végétation), bâtiments
- Drones (nouveaux capteurs, nouvelles applications)
- Cartographie mobile (multiples capteurs, images panoramiques)
- Véhicule autonome (multiples capteurs)
- Intérieurs des bâtiments (chariots mobiles)
- BIM (tel-que-construit)
- Complémentarité avec le LiDAR

Colloque SFPT

Photogrammétrie numérique et

perception 3D : les nouvelles conquêtes


Photogrammétrie : bilan et perspectives de 150 années d'histoires

Pierre GRUSSENMEYER

pierre.grussenmeyer@insa-strasbourg.fr

